Decoupled Response of Ocean Acidification to Variations in Climate Sensitivity

Katsumi Matsumoto Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota

Search for other papers by Katsumi Matsumoto in
Current site
Google Scholar
PubMed
Close
and
Ben McNeil Climate Change Research Centre, Faculty of Science, University of New South Wales, Sydney, Australia

Search for other papers by Ben McNeil in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It is now well understood that the global surface ocean, whose pH has been reduced by ~0.1 in response to rising atmospheric CO2 since industrialization, will continue to become more acidic as fossil fuel CO2 emissions escalate. However, it is unclear how uncertainties in climate sensitivity to future CO2 emissions will alter the manifestation of ocean acidification. Using an earth system model of intermediate complexity, this study performs a set of simulations that varies equilibrium climate sensitivity by 1.0°–4.5°C for a given CO2 emissions scenario and finds two unexpected and decoupled responses. First, the greater the climate sensitivity, the larger the surface mixed layer acidification signal but the smaller the subsurface acidification. However, taken throughout the ocean, the highest climate sensitivity will paradoxically cause greater global warming while buffering whole-ocean pH by up to 24% on centennial time scales. Second, this study finds a large decoupling between pH and carbonate ion concentration in surface waters whereby these chemical properties show opposite effects under variable climate sensitivity. For every 1°C increase in climate sensitivity, the surface ocean pH reduction grows by 4%, while surface ocean carbonate ion reduction shrinks by 2%. The chemical and spatial decoupling found here highlights the importance of distinguishing the biological impacts of pH and aragonite saturation and understanding the spatial extent of important calcifying biomes so as to truly understand the long-term impacts of ocean acidification.

Corresponding author address: Katsumi Matsumoto, Department of Earth Sciences, University of Minnesota, 310 Pillsbury Dr. SE, Minneapolis, MN 55455. E-mail: katsumi@umn.edu

Abstract

It is now well understood that the global surface ocean, whose pH has been reduced by ~0.1 in response to rising atmospheric CO2 since industrialization, will continue to become more acidic as fossil fuel CO2 emissions escalate. However, it is unclear how uncertainties in climate sensitivity to future CO2 emissions will alter the manifestation of ocean acidification. Using an earth system model of intermediate complexity, this study performs a set of simulations that varies equilibrium climate sensitivity by 1.0°–4.5°C for a given CO2 emissions scenario and finds two unexpected and decoupled responses. First, the greater the climate sensitivity, the larger the surface mixed layer acidification signal but the smaller the subsurface acidification. However, taken throughout the ocean, the highest climate sensitivity will paradoxically cause greater global warming while buffering whole-ocean pH by up to 24% on centennial time scales. Second, this study finds a large decoupling between pH and carbonate ion concentration in surface waters whereby these chemical properties show opposite effects under variable climate sensitivity. For every 1°C increase in climate sensitivity, the surface ocean pH reduction grows by 4%, while surface ocean carbonate ion reduction shrinks by 2%. The chemical and spatial decoupling found here highlights the importance of distinguishing the biological impacts of pH and aragonite saturation and understanding the spatial extent of important calcifying biomes so as to truly understand the long-term impacts of ocean acidification.

Corresponding author address: Katsumi Matsumoto, Department of Earth Sciences, University of Minnesota, 310 Pillsbury Dr. SE, Minneapolis, MN 55455. E-mail: katsumi@umn.edu
Save
  • Anderson, L. A., and J. L. Sarmiento, 1994: Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem. Cycles, 8, 6580.

    • Search Google Scholar
    • Export Citation
  • Archer, D., and Coauthors, 2009: Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci., 37, 117134.

  • Bopp, L., P. Monfray, O. Aumont, J.-L. Dufresne, H. L. Treut, G. Madec, L. Terray, and J. Orr, 2001: Potential impact of climate change on marine export production. Global Biogeochem. Cycles, 15, 8199.

    • Search Google Scholar
    • Export Citation
  • Bopp, L., O. Aumont, P. Cadule, S. Alvain, and M. Gehlen, 2005: Response of diatoms distribution to global warming and potential implications: A global model study. Geophys. Res. Lett., 32, L19606, doi:10.1029/2005GL023653.

    • Search Google Scholar
    • Export Citation
  • Caldeira, K., and M. E. Wickett, 2003: Oceanography: Anthropogenic carbon and ocean pH. Nature, 425, 365, doi:10.1038/425365a.

  • Cao, L., and Coauthors, 2009: The role of ocean transport in the uptake of anthropogenic CO2. Biogeosciences, 6, 375390.

  • Chikamoto, M. O., K. Matsumoto, and A. Ridgwell, 2008: Response of deep-sea CaCO3 sedimentation to Atlantic meridional overturning circulation shutdown. J. Geophys. Res., 113, G03017, doi:10.1029/2007JG000669.

    • Search Google Scholar
    • Export Citation
  • Crueger, T., E. Roeckner, T. Raddatz, R. Schnur, and P. Wetzel, 2008: Ocean dynamics determine the response of oceanic CO2 uptake to climate change. Climate Dyn., 31, 151168.

    • Search Google Scholar
    • Export Citation
  • Devine, B. M., P. L. Munday, and G. P. Jones, 2012: Homing ability of adult cardinal fish is affected by elevated carbon dioxide. Oecologia, 168, 269276, doi:10.1007/s00442-011-2081-2.

    • Search Google Scholar
    • Export Citation
  • Domenici, P., B. Allan, M. I. McCormick, and P. L. Munday, 2012: Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biol. Lett., 8, 7881, doi:10.1098/rsbl.2011.0591.

    • Search Google Scholar
    • Export Citation
  • Dunne, J., J. Sarmiento, and A. Gnanadesikan, 2007: A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem. Cycles, 21, GB4006, doi:10.1029/2006GB002907.

    • Search Google Scholar
    • Export Citation
  • Edwards, N. R., and R. Marsh, 2005: Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model. Climate Dyn., 24, 415433.

    • Search Google Scholar
    • Export Citation
  • Hunt, B., E. Pakhomov, G. Hosie, V. Siegel, P. Ward, and K. Bernard, 2008: Pteropods in Southern Ocean ecosystems. Prog. Oceanogr., 78, 193221.

    • Search Google Scholar
    • Export Citation
  • Iglesias-Rodriguez, M. D., E. T. Buitenhuis, J. A. Raven, O. Schofield, A. J. Poulton, S. Gibbs, P. R. Halloran, and H. J. W. d. Baar, 2008a: Response to comment on “Phytoplankton calcification in a high-CO2 world.” Science, 322, 1466, doi:10.1126/science.1161501.

    • Search Google Scholar
    • Export Citation
  • Iglesias-Rodriguez, M. D., and Coauthors, 2008b: Phytoplankton calcification in a high-CO2 world. Science, 320, 336340, doi:10.1126/science.1154122.

    • Search Google Scholar
    • Export Citation
  • Joos, F., G.-K. Plattner, T. F. Stocker, O. Marchal, and A. Schmittner, 1999: Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science, 284, 464467.

    • Search Google Scholar
    • Export Citation
  • Klaas, C., and D. Archer, 2002: Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochem. Cycles, 16, 1116, doi:10.1029/2001GB001765.

    • Search Google Scholar
    • Export Citation
  • Lee, S., J. Chiang, K. Matsumoto, and K. Tokos, 2011: Southern Ocean wind response to North Atlantic cooling and the rise in atmospheric CO2: Modeling perspective and paleoceanographic implications. Paleoceanography, 26, PA1214, doi:10.1029/2010PA002004.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Matear, R. J., and A. C. Hirst, 1999: Climate change feedback on the future oceanic CO2 uptake. Tellus, 51B, 722733.

  • Matsumoto, K., and Coauthors, 2004: Evaluation of ocean carbon cycle models with data-based metrics. Geophys. Res. Lett., 31, L07303, doi:10.1029/2003GL018970.

    • Search Google Scholar
    • Export Citation
  • Matsumoto, K., K. Tokos, A. R. Price, and S. Cox, 2008: First description of the Minnesota earth system model for ocean biogeochemistry (MESMO 1.0). Geosci. Model Dev., 1, 115.

    • Search Google Scholar
    • Export Citation
  • Matsumoto, K., K. Tokos, M. O. Chikamoto, and A. Ridgwell, 2010: Characterizing postindustrial changes in the natural ocean carbon cycle in an Earth system model. Tellus, 62B, 296313.

    • Search Google Scholar
    • Export Citation
  • McNeil, B. I., and R. Matear, 2007: Climate change feedback on future ocean acidification. Tellus, 59, 191198.

  • McNeil, B. I., and R. Matear, 2008: Southern Ocean acidification: A tipping point at 450 ppm atmospheric CO2. Proc. Natl. Acad. Sci. USA, 105, 18 86018 864, doi:10.1073/pnas.0806318105.

    • Search Google Scholar
    • Export Citation
  • Munday, P. L., D. L. Dixson, J. M. Donelson, G. P. Jones, M. S. Pratchett, G. V. Devitsina, and K. B. Doving, 2009: Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl. Acad. Sci. USA, 106, 18481852, doi:10.1073/pnas.0809996106.

    • Search Google Scholar
    • Export Citation
  • Munday, P. L., D. L. Dixson, M. I. McCormick, M. Meekan, M. C. O. Ferrari, and D. P. Chivers, 2010: Replenishment of fish populations is threatened by ocean acidification. Proc. Natl. Acad. Sci. USA, 107, 12 93012 934, doi:10.1073/pnas.1004519107.

    • Search Google Scholar
    • Export Citation
  • Orr, J. C., and Coauthors, 2005: Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437, 681686.

    • Search Google Scholar
    • Export Citation
  • Padilla, L. E., G. K. Vallis, and C. W. Rowley, 2011: Probabilistic estimates of transient climate sensitivity subject to uncertainty in forcing and natural variability. J. Climate, 24, 55215537.

    • Search Google Scholar
    • Export Citation
  • Parry, M. L., O. F. Canziani, J. P. Palutikof, P. J. van der Linden, and C. E. Hanson, Eds., 2007: Climate Change 2007: Impacts, Adaptation, and Vulnerability. Cambridge University Press, 976 pp.

  • Plattner, G.-K., F. Joos, T. Stocker, and O. Marchal, 2001: Feedback mechanisms and sensitivities of ocean carbon uptake under global warming. Tellus, 53B, 564592.

    • Search Google Scholar
    • Export Citation
  • Riebesell, U., I. Zondervan, B. Rost, P. Tortell, R. Zeebe, and F. Morel, 2000: Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407, 364367.

    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371.

  • Sarmiento, J. L., T. M. C. Hughes, R. J. Stouffer, and S. Manabe, 1998: Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 393, 245249.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., N. M. Urban, J. D. Shakun, N. M. Mahowald, P. U. Clark, P. J. Bartlein, A. C. Mix, and A. Rosell-Mele, 2011: Climate sensitivity estimated from temperature reconstructions of the last glacial maximum. Science, 334, 13851388, doi:10.1126/science.1203513.

    • Search Google Scholar
    • Export Citation
  • Schulz, K. G., J. B. E. Ramos, R. E. Zeebe, and U. Riebesell, 2009: CO2 perturbation experiments: Similarities and differences between dissolved inorganic carbon and total alkalinity manipulations. Biogeosciences, 6, 21452153.

    • Search Google Scholar
    • Export Citation
  • Shi, D. L., Y. Xu, B. M. Hopkinson, and F. M. M. Morel, 2010: Effect of ocean acidification on iron availability to marine phytoplankton. Science, 327, 676679, doi:10.1126/science.1183517.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Steinacher, M., F. Joos, T. L. Frolicher, G. K. Plattner, and S. C. Doney, 2009: Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences, 6, 515533.

    • Search Google Scholar
    • Export Citation
  • Sun, X., and K. Matsumoto, 2010: Effects of sea ice on atmospheric pCO2: A revised view and implications for glacial and future climates. J. Geophys. Res., 115, G02015, doi:10.1029/2009JG001023.

    • Search Google Scholar
    • Export Citation
  • Ushie, H., and K. Matsumoto, 2012: The role of shelf nutrients on glacial-interglacial CO2: A negative feedback. Global Biogeochem. Cycles, 26, GB2039, doi:10.1029/2011GB004147.

    • Search Google Scholar
    • Export Citation
  • Zeebe, R. E., J. C. Zachos, K. Caldeira, and T. Tyrell, 2008: Carbon emissions and acidification. Science, 321, 5152, doi:10.1126/science.1159124.

    • Search Google Scholar
    • Export Citation
  • Zickfeld, K., M. Eby, and A. J. Weaver, 2008: Carbon-cycle feedbacks of changes in the Atlantic meridional overturning circulation under future atmospheric CO2. Global Biogeochem. Cycles, 22, GB3024, doi:10.1029/2007GB003118.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 333 125 10
PDF Downloads 220 76 4