• Argus, D. F., and W. R. Peltier, 2010: Constraining models of postglacial rebound using space geodesy: A detailed assessment of model ICE-5G (VM2) and its relatives. Geophys. J. Int., 181, 697723.

    • Search Google Scholar
    • Export Citation
  • Ballantyne, A. P., M. Lavine, T. J. Crowley, J. Liu, and P. B. Baker, 2005: Meta-analysis of tropical surface temperatures during the Last Glacial Maximum. Geophys. Res. Lett., 32, L05712, doi:10.1029/2004GL021217.

    • Search Google Scholar
    • Export Citation
  • Bartlein, P., and Coauthors, 2011: Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis. Climate Dyn., 37, 775802, doi:10.1007/s00382-010-0904-1.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., R. S. W. van de Wal, and J. Oerlemans, 2005: A new method to estimate ice age temperatures. Climate Dyn., 24, 197211, doi:10.1007/s00382-004-0486-x.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., M. M. Holland, E. Hunke, and R. E. Moritz, 2005: Maintenance of the sea-ice edge. J. Climate, 18, 29032921.

  • Bitz, C. M., K. M. Shell, P. R. Gent, D. Bailey, G. Danabasoglu, K. C. Armour, M. M. Holland, and J. T. Kiehl, 2012: Climate sensitivity in the Community Climate System Model version 4. J. Climate, 25, 30533070.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., S. P. Harrison, M. Kageyama, P. J. Bartlein, V. Masson-Delmotte, A. Abe-Ouchi, B. Otto-Bliesner, and Y. Zhao, 2012: Evaluation of climate models using palaeoclimatic data. Nat. Climate Change,2, 1417–1424, doi:10.1038/nclimate1456.

  • Briegleb, B. P., and B. Light, 2007: A Delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model. NCAR Tech. Note 472+STR, 100 pp.

  • Crucifix, M., 2006: Does the Last Glacial Maximum constrain climate sensitivity? Geophys. Res. Lett.,33, L18701, doi:10.1029/2006GL027137.

  • Dahl-Jensen, D., K. Mosegaard, N. Gundestrup, G. D. Clow, S. J. Hohnsen, A. W. Hansen, and N. Balling, 1998: Past temperatures directly from the Greenland Ice Sheet. Science, 282, 268271.

    • Search Google Scholar
    • Export Citation
  • Dallenbach, A., T. Blunier, J. Fluckiger, B. Stauffer, J. Chappellaz, and D. Raynaud, 2000: Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Last Glacial and the transition to the Holocene. Geophys. Res. Lett., 27, 10051008.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and P. R. Gent, 2009: Equilibrium climate sensitivity: Is it accurate to use a slab ocean model? J. Climate, 22, 24942499.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012a: The CCSM4 ocean component. J. Climate, 25, 13611389.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. G. Yeager, Y.-O. Kwon, J. J. Tribbia, A. S. Phillips, and J. W. Hurrell, 2012b: Variability of the Atlantic meridional overturning circulation in CCSM4. J. Climate, 25, 51535172.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in Community Climate System Model version 4. J. Climate, 25, 26222651.

    • Search Google Scholar
    • Export Citation
  • de Vernal, A., and C. Hillaire-Marcel, 2000: Sea-ice cover, sea-surface salinity and halo-/thermocline structure of the northwest North Atlantic: Modern versus full glacial conditions. Quat. Sci. Rev., 19, 6585.

    • Search Google Scholar
    • Export Citation
  • Edwards, T. L., M. Crucifix, and S. P. Harrison, 2007: Using the past to constrain the future: How the palaeorecord can improve estimates of global warming. Prog. Phys. Geogr., 31, 481500.

    • Search Google Scholar
    • Export Citation
  • Fluckiger, J., A. Dallenbach, T. Blunier, B. Stauffer, T. F. Stocker, D. Raynaud, and J. M. Barnola, 1999: Variations in atmospheric N2O concentration during abrupt climatic changes. Science, 285, 227230.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991.

  • Gersonde, R., X. Crosta, A. Abelmann, and L. Armand, 2005: Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—A circum-Antarctic view based on siliceous microfossil records. Quat. Sci. Rev., 24, 869896.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and J. F. B. Mitchell, 1997: The climate response to CO2 of the Hadley Centre coupled AOGCM with and without flux adjustment. Geophys. Res. Lett., 24, 19431946.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi:10.1029/2003GL018747.

    • Search Google Scholar
    • Export Citation
  • Hargreaves, J. C., A. Abe-Ouchi, and J. D. Annan, 2007: Linking glacial and future climates through an ensemble of GCM simulations. Climate Past, 3, 7787.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Holland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke, 2012: Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on arctic sea ice. J. Climate, 25, 14131430.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual, version 4.1. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 76 pp.

  • Jahn, A., and Coauthors, 2012: Late-twentieth-century simulation of arctic sea ice and ocean properties in the CCSM4. J. Climate, 25, 14311452.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., M. M. Holland, C. M. Bitz, E. Blanchard-Wrigglesworth, A. Gettelman, A. Conley, and D. Bailey, 2012: The influence of local feedbacks and northward heat transport on the equilibrium Arctic climate response to increased greenhouse gas forcing. J. Climate, 25, 54335450.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and G. C. Hegerl, 2008: The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat. Geosci., 1, 735743.

    • Search Google Scholar
    • Export Citation
  • Lambeck, K., A. Purcell, J. Zhao, and N.-O. Svensson, 2010: The Scandinavian Ice Sheet: From MIS 4 to the end of the Last Glacial Maximum. Boreas, 39, 410435, doi:10.1111/j.1502-3885.2010.00140.x.

    • Search Google Scholar
    • Export Citation
  • Landrum, L., M. M. Holland, D. Schneider, and E. Hunke, 2012: Antarctic sea ice variability and change in CCSM4. J. Climate, 25, 4817–4838.

    • Search Google Scholar
    • Export Citation
  • Landrum, L., B. L. Otto-Bliesner, E. R. Wahl, A. Conley, P. J. Lawrence, N. Rosenbloom, and H. Teng, 2013: Last Millennium climate and its variability in CCSM4. J. Climate, 26, 10851111.

    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., A. A. Mirin, J. Truesdale, K. Raeder, J. L. Anderson, J. Bacmeister, and R. Niele, 2012: Implementation of new diffusion/filtering operators in the CAM-FV dynamical core. Int. J. High Perform. Comput. Appl., 26, 6377.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., K. W. Oleson, M. G. Flanner, C. G. Fletcher, P. J. Lawrence, S. Levis, S. C. Swenson, and G. B. Bonan, 2012: The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. J. Climate, 25, 22402260.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and T. N. Chase, 2007: Representing a new MODIS consistent land surface in the Community Land Model (CLM3.0). J. Geophys. Res., 112, G01023, doi:10.1029/2006JG000168.

    • Search Google Scholar
    • Export Citation
  • Lee, E., and S. Nam, 2004: Low sea surface salinity in the East Sea during the Last Glacial Maximum: Review on freshwater supply. Geosci. J., 8, 4349.

    • Search Google Scholar
    • Export Citation
  • Lynch-Steiglitz, J., W. B. Curry, and N. Slowey, 1999: Weaker Gulf Stream in the Florida Straits during the Last Glacial Maximum. Nature, 402, 644648.

    • Search Google Scholar
    • Export Citation
  • Lynch-Steiglitz, J., and Coauthors, 2007: Atlantic meridional overturning circulation during the Last Glacial Maximum. Science, 316, 6669.

    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and Coauthors, 2006: Past and future polar amplification of climate change: Climate model intercomparisons and ice-core constraints. Climate Dyn., 26, 513529; Corrigendum, 27, 437–440.

    • Search Google Scholar
    • Export Citation
  • McManus, J. F., R. Francois, J. M. Gherardi, L. D. Keigwin, and S. Brown-Leger, 2004: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834837.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2012: Climate system response to external forcings and climate change projections in CCSM4. J. Climate, 25, 36613683.

    • Search Google Scholar
    • Export Citation
  • Monnin, E., and Coauthors, 2001: Atmospheric CO2 concentrations over the last glacial termination. Science, 291, 112114.

  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., and E. C. Brady, 2010: The sensitivity of the climate response to the magnitude and location of freshwater forcing: Last Glacial Maximum experiments. Quat. Sci. Rev., 29, 5673.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., E. C. Brady, S. I. Shin, Z. Y. Liu, and C. Shields, 2003: Modeling El Niño and its tropical teleconnections during the last glacial–interglacial cycle. Geophys. Res. Lett., 30, 2198, doi:10.1029/2003GL018553.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., E. C. Brady, G. Clauzet, R. Tomas, S. Levis, and Z. Kothavala, 2006: Last Glacial Maximum and Holocene climate in CCSM3. J. Climate, 19, 25262544.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., and Coauthors, 2007: Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys. Res. Lett., 34, L12706, doi:10.1029/2007GL029475.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., and Coauthors, 2009: A comparison of PMIP2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at Last Glacial Maximum. Climate Dyn., 32, 799815.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., 2004: Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci., 32, 111149.

    • Search Google Scholar
    • Export Citation
  • Power, M. J., and Coauthors, 2008: Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data. Climate Dyn., 30, 887907.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and Coauthors, 2001: Radiative forcing of climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 349–416.

  • Richter, J. H., and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 14871499.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., K. J. Meissner, M. Eby, and A. J. Weaver, 2002: Forcing of the deep ocean circulation in simulations of the Last Glacial Maximum. Paleoceanography, 17, 1015, doi:10.1029/2001PA000633.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., N. M. Urban, J. K. Shakun, N. M. Mahowald, P. U. Clark, P. J. Bartlein, A. C. Mix, and A. Rosell-Melé, 2011: Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum. Science,334, 1385–1388, doi:10.1126/science.1203513.

  • Schneider von Deimling, T., H. Held, A. Ganopolski, and S. Rahmstorf, 2006: Climate sensitivity estimated from ensemble simulations of glacial climate. Climate Dyn., 27, 149163.

    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and J. F. B. Mitchell, 2000: The time-dependence of climate sensitivity. Geophys. Res. Lett., 27, 26852688.

  • Shin, S. I., Z. Liu, B. Otto-Bliesner, E. C. Brady, J. E. Kutzbach, and S. P. Harrison, 2003: A simulation of the Last Glacial Maximum climate using the NCAR-CCSM. Climate Dyn., 20, 127151.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual. Los Alamos National Laboratory Tech. Rep. LAUR-10-01853, 140 pp.

  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Sutton, R. T., B. Dong, and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, doi:10.1029/2006GL028164.

    • Search Google Scholar
    • Export Citation
  • Tarasov, L., and W. R. Peltier, 2004: A geophysically constrained large ensemble analysis of the deglacial history of the North American ice-sheet complex. Quat. Sci. Rev., 23, 359388.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., M. Crucifix, P. Braconnot, C. D. Hewitt, C. Doutriaux, A. J. Broccoli, J. F. B. Mitchell, and M. J. Webb, 2007: Estimating shortwave radiative forcing and response in climate models. J. Climate, 20, 2530–2543.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., J. F. Lamarque, N. A. Rosenbloom, and N. M. Mahowald, 2007: Influence of carbon/nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem. Cycles, 21, GB4018, doi:10.1029/2006GB002868.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., J. L. Russell, and S. R. Carson, 2006: Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography, 21, PA2005, doi:10.1029/2005PA001154.

    • Search Google Scholar
    • Export Citation
  • Waelbroeck, C., and Coauthors, 2009: Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat. Geosci., 2, 127132, doi:10.1038/ngeo411.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., T. Yokohata, and A. Abe-Ouchi, 2009: A comparison of climate feedback strength between CO2 doubling and LGM experiments. J. Climate, 22, 33743395.

    • Search Google Scholar
    • Export Citation
  • Zheng, W., P. Braconnot, E. Guilyardi, U. Merkel, and Y. Yu, 2008: ENSO at 6ka and 21ka from ocean–atmosphere coupled model simulations. Climate Dyn., 30, 745762.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 54 54 54
PDF Downloads 16 16 16

Sensitivity to Glacial Forcing in the CCSM4

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
Restricted access

Abstract

Results are presented from the Community Climate System Model, version 4 (CCSM4), simulation of the Last Glacial Maximum (LGM) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) at the standard 1° resolution, the same resolution as the majority of the CCSM4 CMIP5 long-term simulations for the historical and future projection scenarios. The forcings and boundary conditions for this simulation follow the protocols of the Paleoclimate Modeling Intercomparison Project, version 3 (PMIP3). Two additional CCSM4 CO2 sensitivity simulations, in which the concentrations are abruptly changed at the start of the simulation to the low 185 ppm LGM concentrations (LGMCO2) and to a quadrupling of the preindustrial concentration (4×CO2), are also analyzed. For the full LGM simulation, the estimated equilibrium cooling of the global mean annual surface temperature is 5.5°C with an estimated radiative forcing of −6.2 W m−2. The radiative forcing includes the effects of the reduced LGM greenhouse gases, ice sheets, continental distribution with sea level lowered by approximately 120 m from the present, and orbital parameters, but not changes to atmospheric aerosols or vegetation biogeography. The LGM simulation has an equilibrium climate sensitivity (ECS) of 3.1(±0.3)°C, comparable to the CCSM4 4×CO2 result. The LGMCO2 simulation shows a greater ECS of 4.2°C. Other responses found at the LGM in CCSM4 include a global precipitation rate decrease at a rate of ~2% °C−1, similar to climate change simulations in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4); a strengthening of the Atlantic meridional overturning circulation (AMOC) with a shoaling of North Atlantic Deep Water and a filling of the deep basin up to sill depth with Antarctic Bottom Water; and an enhanced seasonal cycle accompanied by reduced ENSO variability in the eastern Pacific Ocean’s SSTs.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Esther C. Brady, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: brady@ucar.edu

This article is included in the CCSM4 Special Collection.

Abstract

Results are presented from the Community Climate System Model, version 4 (CCSM4), simulation of the Last Glacial Maximum (LGM) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) at the standard 1° resolution, the same resolution as the majority of the CCSM4 CMIP5 long-term simulations for the historical and future projection scenarios. The forcings and boundary conditions for this simulation follow the protocols of the Paleoclimate Modeling Intercomparison Project, version 3 (PMIP3). Two additional CCSM4 CO2 sensitivity simulations, in which the concentrations are abruptly changed at the start of the simulation to the low 185 ppm LGM concentrations (LGMCO2) and to a quadrupling of the preindustrial concentration (4×CO2), are also analyzed. For the full LGM simulation, the estimated equilibrium cooling of the global mean annual surface temperature is 5.5°C with an estimated radiative forcing of −6.2 W m−2. The radiative forcing includes the effects of the reduced LGM greenhouse gases, ice sheets, continental distribution with sea level lowered by approximately 120 m from the present, and orbital parameters, but not changes to atmospheric aerosols or vegetation biogeography. The LGM simulation has an equilibrium climate sensitivity (ECS) of 3.1(±0.3)°C, comparable to the CCSM4 4×CO2 result. The LGMCO2 simulation shows a greater ECS of 4.2°C. Other responses found at the LGM in CCSM4 include a global precipitation rate decrease at a rate of ~2% °C−1, similar to climate change simulations in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4); a strengthening of the Atlantic meridional overturning circulation (AMOC) with a shoaling of North Atlantic Deep Water and a filling of the deep basin up to sill depth with Antarctic Bottom Water; and an enhanced seasonal cycle accompanied by reduced ENSO variability in the eastern Pacific Ocean’s SSTs.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Esther C. Brady, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: brady@ucar.edu

This article is included in the CCSM4 Special Collection.

Save