• Abbot, D. S., and E. Tziperman, 2008a: A high-latitude convective cloud feedback and equable climates. Quart. J. Roy. Meteor. Soc., 134, 165185.

    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., and E. Tziperman, 2008b: Sea ice, high-latitude convection, and equable climates. Geophys. Res. Lett., 35, L03702, doi:10.1029/2007GL032286.

    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., and E. Tziperman, 2009: Controls on the activation and strength of a high-latitude convective cloud feedback. J. Atmos. Sci., 66, 519529.

    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., M. Huber, G. Bousquet, and C. C. Walker, 2009a: High-CO2 cloud radiative forcing feedback over both land and ocean in a global climate model. Geophys. Res. Lett., 36, L05702, doi:10.1029/2008GL036703.

    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., C. C. Walker, and E. Tziperman, 2009b: Can a convective cloud feedback help to eliminate winter sea ice at high CO2 concentrations? J. Climate, 22, 57195731.

    • Search Google Scholar
    • Export Citation
  • Adcroft, A., J.-M. Campin, C. Hill, and J. Marshall, 2004: Implementation of an atmosphere–ocean general circulation model on the expanded spherical cube. Mon. Wea. Rev., 132, 28452863.

    • Search Google Scholar
    • Export Citation
  • Barron, E. J., 1983: A warm, equable Cretaceous: the nature of the problem. Earth Sci. Rev., 19, 305338.

  • Barron, E. J., 1987: Eocene equator-to-pole surface ocean temperatures: A significant climate problem? Paleoceanography, 2, 729739.

  • Barron, E. J., W. H. Peterson, D. Pollard, and S. Thompson, 1993: Past climate and the role of ocean heat transport: Model simulations for the Cretaceous. Paleoceanography, 8, 785798.

    • Search Google Scholar
    • Export Citation
  • Bice, K. L., C. R. Scotese, D. Seidov, and E. J. Barron, 2000: Quantifying the role of geographic change in Cenozoic ocean heat transport using uncoupled atmosphere and ocean models. Palaeogeogr. Palaeoclimatol. Palaeoecol., 161, 295310.

    • Search Google Scholar
    • Export Citation
  • Bracco, A., F. Kucharski, R. Kallummal, and F. Molteni, 2004: Internal variability, external forcing and climate trends in multi-decadal AGCM ensembles. Climate Dyn., 23, 659678.

    • Search Google Scholar
    • Export Citation
  • Bush, A. B., and S. G. H. Philander, 1997: The late Cretaceous: Simulation with a coupled atmosphere-ocean general circulation model. Paleoceanography, 12, 495516.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., and P. L. Langen, 2005: The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys. Res. Lett., 32, L02705, doi:10.1029/2004GL021581.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196.

  • Covey, C., and E. Barron, 1988: The role of ocean heat transport in climatic change. Earth Sci. Rev., 24, 429445.

  • Czaja, A., and J. Marshall, 2006: The partitioning of poleward heat transport between the atmosphere and ocean. J. Atmos. Sci., 63, 14981511.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and N. Blunt, 2011: A new mechanism for ocean–atmosphere coupling in midlatitudes. Quart. J. Roy. Meteor. Soc., 137, 10951101.

    • Search Google Scholar
    • Export Citation
  • D’Hondt, S., and M. A. Arthur, 1996: Late Cretaceous oceans and the cool tropic paradox. Science, 271, 18381841.

  • Emanuel, K., 2002: A simple model of multiple climate regimes. J. Geophys. Res., 107, 4077, doi:10.1029/2001JD001002.

  • Enderton, D., and J. Marshall, 2009: Explorations of atmosphere-ocean-ice climates on an aquaplanet and their meridional energy transports. J. Atmos. Sci., 66, 15931611.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and J.-M. Campin, 2010: Localization of deep water formation: Role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Climate, 23, 14561476.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and B. E. J. Rose, 2011: Climate determinism revisited: multiple equilibria in a complex climate model. J. Climate, 24, 9921012.

    • Search Google Scholar
    • Export Citation
  • Greenwood, D. R., and S. L. Wing, 1995: Eocene continental climates and latitudinal temperature gradients. Geology, 23, 10441048.

  • Hazeleger, W., R. Seager, M. A. Cane, and N. H. Naik, 2004: How can tropical Pacific ocean heat transport vary? J. Phys. Oceanogr., 34, 320333.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Held, I. M., M. Zhao, and B. Wyman, 2007: Dynamic radiative–convective equilibria using GCM column physics. J. Atmos. Sci., 64, 228238.

    • Search Google Scholar
    • Export Citation
  • Herweijer, C., R. Seager, M. Winton, and A. Clement, 2005: Why ocean heat transport warms the global mean climate. Tellus, 57A, 662675.

    • Search Google Scholar
    • Export Citation
  • Hotinski, R., and J. Toggweiler, 2003: Impact of a Tethyan circumglobal passage on ocean heat transport and “equable” climates. Paleoceanography, 18, 1007, doi:10.1029/2001PA000730.

    • Search Google Scholar
    • Export Citation
  • Huber, M., 2008: A hotter greenhouse? Science, 321, 353354.

  • Huber, M., and L. C. Sloan, 2000: Climatic responses to tropical sea surface temperature changes on a “greenhouse” Earth. Paleoceanography, 15, 443450.

    • Search Google Scholar
    • Export Citation
  • Huber, M., and L. C. Sloan, 2001: Heat transport, deep waters, and thermal gradients: Coupled simulation of an Eocene greenhouse climate. Geophys. Res. Lett., 28, 34813484.

    • Search Google Scholar
    • Export Citation
  • Huber, M., and D. Nof, 2006: The ocean circulation in the Southern Hemisphere and its climate impacts in the Eocene. Palaeogeogr. Palaeoclimatol. Palaeoecol., 231, 928.

    • Search Google Scholar
    • Export Citation
  • Huber, M., and R. Caballero, 2011: The early Eocene equable climate problem revisited. Climate Past, 7, 603633.

  • Huber, M., L. C. Sloan, and C. Shellito, 2003: Early Paleogene oceans and climate: A fully coupled modeling approach using the NCAR GCM. Causes and Consequences of Globally Warm Climates in the Early Paleogene, S. L. Wing et al., Eds., Geology Society of America, 25–47.

  • Jansen, M., and R. Ferrari, 2009: Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophys. Res. Lett., 36, L06604, doi:10.1029/2008GL036796.

    • Search Google Scholar
    • Export Citation
  • Jansen, M., R. Ferrari, and T. A. Mooring, 2010: Seasonal versus permanent thermocline warming by tropical cyclones. Geophys. Res. Lett., 37, L03602, doi:10.1029/2009GL041808.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827.

    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and T. Schneider, 2011: Winter cold of eastern continental boundaries induced by warm ocean waters. Nature, 471, 621624.

  • Korty, R. L., and K. A. Emanuel, 2007: The dynamic response of the winter stratosphere to an equable climate surface temperature gradient. J. Climate, 20, 52135228.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., and T. Schneider, 2007: A climatology of the tropospheric thermal stratification using saturation potential vorticity. J. Climate, 20, 59775991.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., K. A. Emanuel, and J. R. Scott, 2008: Tropical cyclone–induced upper-ocean mixing and climate: Application to equable climates. J. Climate, 21, 638654.

    • Search Google Scholar
    • Export Citation
  • Langen, P. L., and V. A. Alexeev, 2007: Polar amplification as a preferred response in an idealized aquaplanet GCM. Climate Dyn., 29, 305317.

    • Search Google Scholar
    • Export Citation
  • Levine, X., and T. Schneider, 2011: Response of the Hadley circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport. J. Atmos. Sci., 68, 769783.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1994: Climate dynamics and global change. Annu. Rev. Fluid Mech., 26, 353378.

  • Manabe, S., 1969: Climate and the ocean circulation II. The atmospheric circulation and the effects of heat transfer by ocean currents. Mon. Wea. Rev., 97, 775805.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, J.-M. Campin, C. Hill, and A. White, 2004: Atmosphere-ocean modeling exploiting fluid isomorphisms. Mon. Wea. Rev., 132, 28822894.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Ferreira, J.-M. Campin, and D. Enderton, 2007: Mean climate and variability of the atmosphere and ocean on an aquaplanet. J. Atmos. Sci., 64, 42704286.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., 2003: Atmospheric simulations using a GCM with simplified physical parameterizations. I: model climatology and variability in multi-decadal experiments. Climate Dyn., 20, 175191.

    • Search Google Scholar
    • Export Citation
  • Norris, R. D., K. L. Bice, E. A. Magno, and P. A. Wilson, 2002: Jiggling the tropical thermostat in the Cretaceous hothouse. Geology, 30, 299302.

    • Search Google Scholar
    • Export Citation
  • North, G. R., R. F. Cahalan, and J. A. Coakley, 1981: Energy balance climate models. Rev. Geophys. Space Phys., 19, 91121.

  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., E. C. Brady, and C. Shields, 2002: Late Cretaceous ocean: Coupled simulations with the National Center for Atmospheric Research Climate System Model. J. Geophys. Res., 107, 4019, doi:10.1029/2001JD000821.

    • Search Google Scholar
    • Export Citation
  • Pearson, P. N., B. E. van Dongen, C. J. Nicholas, R. D. Pancost, S. Schouten, J. M. Singano, and B. S. Wade, 2007: Stable warm tropical climate through the Eocene Epoch. Geology, 35, 211214.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2002: The hydrologic cycle in deep-time climate problems. Nature, 419, 191198.

  • Pierrehumbert, R. T., 2010: Principles of Planetary Climate. Cambridge University Press, 680 pp.

  • Pierrehumbert, R. T., H. Brogniez, and R. Roca, 2007: On the relative humidity of the atmosphere. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 143–185.

  • Rind, D., and M. Chandler, 1991: Increased ocean heat transports and warmer climates. J. Geophys. Res., 96, 74377461.

  • Rose, B. E. J., and J. Marshall, 2009: Ocean heat transport, sea ice, and multiple climate states: Insights from energy balance models. J. Atmos. Sci., 66, 28282843.

    • Search Google Scholar
    • Export Citation
  • Royer, D. L., R. A. Berner, I. P. Montañez, N. J. Tabor, and D. J. Beerling, 2004: CO2 as a primary driver of Phanerozoic climate. GSA Today, 14, 410.

    • Search Google Scholar
    • Export Citation
  • Sanderson, B., C. Piani, W. Ingram, D. Stone, and M. Allen, 2008: Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Climate Dyn., 30, 175190.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and L. A. Mysak, 1996: Can increased poleward oceanic heat flux explain the warm Cretaceous climate? Paleoceanography, 11, 579593.

    • Search Google Scholar
    • Export Citation
  • Seager, R., D. Battisti, J. Yin, N. Gordon, N. Naik, A. Clement, and M. Cane, 2002: Is the Gulf Stream responsible for Europe’s mild winters? Quart. J. Roy. Meteor. Soc., 128, 25632586.

    • Search Google Scholar
    • Export Citation
  • Severijns, C. A., and W. Hazeleger, 2010: The efficient global primitive equation climate model SPEEDO V2.0. Geosci. Model Dev., 3, 105122.

    • Search Google Scholar
    • Export Citation
  • Sloan, L. C., J. C. G. Walker, and T. C. M. Jr, 1995: Possible role of oceanic heat transport in early Eocene climate. Paleoceanography, 10, 347356.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665.

  • Stone, P. H., 1978: Constraints on dynamical transports of energy on a spherical planet. Dyn. Atmos. Oceans, 2, 123139.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443.

  • Vallis, G. K., and R. Farneti, 2009: Meridional energy transport in the coupled atmosphere–ocean system: Scaling and numerical experiments. Quart. J. Roy. Meteor. Soc., 135, 16431660.

    • Search Google Scholar
    • Export Citation
  • von der Heydt, A., and H. A. Dijkstra, 2006: Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene. Paleoceanography, 21, PA1011, doi:10.1029/2005PA001149.

    • Search Google Scholar
    • Export Citation
  • Wilson, P. A., R. D. Norris, and M. J. Cooper, 2002: Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology, 30, 607610.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2003: On the climatic impact of ocean circulation. J. Climate, 16, 28752889.

  • Wunsch, C., 2005: The total meridional heat flux and its oceanic and atmospheric partition. J. Climate, 18, 43744380.

  • Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups, 2001: Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686693.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., K. Nisancioglu, F. Flatøy, M. Bentsen, I. Bethke, and H. Wang, 2011: Tropical seaways played a more important role than high latitude seaways in Cenozoic cooling. Climate Past, 7, 801813.

    • Search Google Scholar
    • Export Citation
  • Zhou, J., C. Poulsen, D. Pollard, and T. White, 2008: Simulation of modern and middle Cretaceous marine δ18O with an ocean-atmosphere general circulation model. Paleoceanography, 23, PA3223, doi:10.1029/2008PA001596.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 1 1 1

Ocean Heat Transport and Water Vapor Greenhouse in a Warm Equable Climate: A New Look at the Low Gradient Paradox

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
  • | 2 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
Restricted access

Abstract

The authors study the role of ocean heat transport (OHT) in the maintenance of a warm, equable, ice-free climate. An ensemble of idealized aquaplanet GCM calculations is used to assess the equilibrium sensitivity of global mean surface temperature and its equator-to-pole gradient (ΔT) to variations in OHT, prescribed through a simple analytical formula representing export out of the tropics and poleward convergence. Low-latitude OHT warms the mid- to high latitudes without cooling the tropics; increases by 1°C and ΔT decreases by 2.6°C for every 0.5-PW increase in OHT across 30° latitude. This warming is relatively insensitive to the detailed meridional structure of OHT. It occurs in spite of near-perfect atmospheric compensation of large imposed variations in OHT: the total poleward heat transport is nearly fixed.

The warming results from a convective adjustment of the extratropical troposphere. Increased OHT drives a shift from large-scale to convective precipitation in the midlatitude storm tracks. Warming arises primarily from enhanced greenhouse trapping associated with convective moistening of the upper troposphere. Warming extends to the poles by atmospheric processes even in the absence of high-latitude OHT.

A new conceptual model for equable climates is proposed, in which OHT plays a key role by driving enhanced deep convection in the midlatitude storm tracks. In this view, the climatic impact of OHT depends on its effects on the greenhouse properties of the atmosphere, rather than its ability to increase the total poleward energy transport.

Corresponding author address: Brian Rose, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: brose@atmos.washington.edu

Abstract

The authors study the role of ocean heat transport (OHT) in the maintenance of a warm, equable, ice-free climate. An ensemble of idealized aquaplanet GCM calculations is used to assess the equilibrium sensitivity of global mean surface temperature and its equator-to-pole gradient (ΔT) to variations in OHT, prescribed through a simple analytical formula representing export out of the tropics and poleward convergence. Low-latitude OHT warms the mid- to high latitudes without cooling the tropics; increases by 1°C and ΔT decreases by 2.6°C for every 0.5-PW increase in OHT across 30° latitude. This warming is relatively insensitive to the detailed meridional structure of OHT. It occurs in spite of near-perfect atmospheric compensation of large imposed variations in OHT: the total poleward heat transport is nearly fixed.

The warming results from a convective adjustment of the extratropical troposphere. Increased OHT drives a shift from large-scale to convective precipitation in the midlatitude storm tracks. Warming arises primarily from enhanced greenhouse trapping associated with convective moistening of the upper troposphere. Warming extends to the poles by atmospheric processes even in the absence of high-latitude OHT.

A new conceptual model for equable climates is proposed, in which OHT plays a key role by driving enhanced deep convection in the midlatitude storm tracks. In this view, the climatic impact of OHT depends on its effects on the greenhouse properties of the atmosphere, rather than its ability to increase the total poleward energy transport.

Corresponding author address: Brian Rose, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: brose@atmos.washington.edu
Save