• Aagaard, K., and E. C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic Circulation. J. Geophys. Res., 94, 14 48514 498.

    • Search Google Scholar
    • Export Citation
  • Bryan, F., 1986: High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323, 301304.

  • Clark, P. U., N. G. Pisias, T. F. Stocker, and A. J. Weaver, 2002: The role of the thermohaline circulation in abrupt climate change. Nature, 415, 863869.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model Version 3 (CCSM3). J. Climate, 19, 21222143.

  • Curry, R., and C. Mauritzen, 2005: Dilution of the northern North Atlantic Ocean in recent decades. Science, 308, 17721774.

  • De Boer, A. M., and D. Nof, 2004a: The exhaust valve of the North Atlantic. J. Climate, 17, 417422.

  • De Boer, A. M., and D. Nof, 2004b: The Bering Strait’s grip on the Northern Hemisphere climate. Deep-Sea Res. I, 51, 13471366.

  • De Vries, P., and S. L. Weber, 2005: The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation. Geophys. Res. Lett., 32, L09606, doi:10.1029/2004GL021450.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., 2007: Characterization of the multiple equilibria regime in a global ocean model. Tellus, 59A, 695705.

  • Drijfhout, S. S., S. L. Weber, and E. van der Swalow, 2010: The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Climate Dyn., 37, 15751586, doi:10.1007/s00382-010-0930-z.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., O. A. Saenko, and A. J. Weaver, 2003: The role of the Atlantic freshwater balance in the hyteresis of the meridional overturning circulation. Climate Dyn., 21, 707717, doi:10.1007/s00382-003-0359-8.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., R. S. Smith, L. C. Allison, J. M. Gregory, T. J. Woollings, H. Pohlmann, and B. de Cuevas, 2011: Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys. Res. Lett., 38, L10605, doi:10.1029/2011GL047208.

    • Search Google Scholar
    • Export Citation
  • He, F., 2011: Simulating transient climate evolution of the last deglaciation with CCSM3. Ph.D. thesis, University of Wisconsin—Madison, 171 pp.

  • Hofmann, M., and S. Rahmstorf, 2009: On the stability of the Atlantic meridional overturning circulation. Proc. Natl. Acad. Sci. USA, 106, 20 58420 589.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, M. Eby, and A. J. Weaver, 2001: The role of ice–ocean interactions in the variability of the North Atlantic thermohaline circulation. J. Climate, 14, 656675.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., J. Finnis, A. P. Barrett, and M. C. Serreze, 2007: Projected changes in Arctic Ocean freshwater budgets. J. Geophys. Res., 112, G04S55, doi:10.1029/2006JG000354.

    • Search Google Scholar
    • Export Citation
  • Hu, A., and G. A. Meehl, 2005: Bering Strait throughflow and the thermohaline circulation. Geophys. Res. Lett., 32, L24610, doi:10.1029/2005GL024424.

    • Search Google Scholar
    • Export Citation
  • Hu, A., G. A. Meehl, and W. Han, 2007: Role of the Bering Strait in the thermohaline circulation and abrupt climate change. Geophys. Res. Lett., 34, L05704, doi:10.1029/2006GL028906.

    • Search Google Scholar
    • Export Citation
  • Hu, A., B. L. Otto-Bliesner, G. A. Meehl, W. Han, C. Morrill, E. C. Brady, and B. Briegleb, 2008: Response of thermohaline circulation to freshwater forcing under present day and LGM conditions. J. Climate, 21, 22392258.

    • Search Google Scholar
    • Export Citation
  • Hughes, T. M., and A. J. Weaver, 1994: Multiple equilibria of an asymmetric two-basin ocean model. J. Phys. Oceanogr., 24, 619637.

  • Huisman, S. E., M. Den Toom, H. A. Dijkstra, and S. S. Drijfhout, 2010: An indicator of the multiple equilibria regime of the Atlantic meridional overturning circulation. J. Phys. Oceanogr., 40, 551567.

    • Search Google Scholar
    • Export Citation
  • Jahn, A., L. B. Tremblay, R. Newton, M. M. Holland, L. A. Mysak, and I. A. Dmitrenko, 2010: A tracer study of the Arctic Ocean’s liquid freshwater export variability. J. Geophys. Res., 115, C07015, doi:10.1029/2009JC005873.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1983: Deep convection in the world ocean. Rev. Geophys. Space Phys., 21, 126.

  • Komuro, Y., and H. Hasumi, 2005: Intensification of the Atlantic deep circulation by the Canadian Archipelago throughflow. J. Phys. Oceanogr., 35, 775789.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and R. J. Haarsma, 1994: Variability and multiple equilibria of the thermohaline circulation associated with deep water formation. J. Phys. Oceanogr., 24, 14801493.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2009: Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science, 325, 310314.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1988: Two stable equilibria of a coupled ocean–atmosphere model. J. Climate, 1, 841866.

  • Marotzke, J., and J. Willebrand, 1991: Multiple equilibria of the global thermohaline circulation. J. Phys. Oceanogr., 21, 13721385.

  • Marotzke, J., P. Welander, and J. Willebrand, 1988: Instability and multiple steady states in a meridional-plane model of the thermohaline circulation. Tellus, 40A, 162172.

    • Search Google Scholar
    • Export Citation
  • Oka, A., and H. Hasumi, 2006: Effects of model resolution on salt transport through northern high-latitude passages and Atlantic meridional overturning circulation. Ocean Modell., 13, 126147, doi:10.1016/j.ocemod.2005.12.004.

    • Search Google Scholar
    • Export Citation
  • Power, S., and R. Kleeman, 1993: Multiple equilibria in a global ocean general circulation model. J. Phys. Oceanogr., 23, 16701681.

  • Rahmstorf, S., 1996: On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dyn., 12, 799811.

  • Rahmstorf, S., 2002: Ocean circulation and climate changes during the past 120 000 years. Nature, 419, 207214.

  • Rahmstorf, S., and Coauthors, 2005: Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett., 32, L23605, doi:10.1029/2005GL023655.

    • Search Google Scholar
    • Export Citation
  • Rennermalm, A. K., E. F. Wood, S. J. Déry, A. J. Weaver, and M. Eby, 2006: Sensitivity of the thermohaline circulation to Arctic Ocean runoff. Geophys. Res. Lett., 33, L12703, doi:10.1029/2006GL026124.

    • Search Google Scholar
    • Export Citation
  • Rennermalm, A. K., E. F. Wood, A. J. Weaver, M. Eby, and S. J. Déry, 2007: Relative sensitivity of the Atlantic meridional overturning circulation to river discharge into Hudson Bay and the Arctic Ocean. J. Geophys. Res., 112, G04S48, doi:10.1029/2006JG000330.

    • Search Google Scholar
    • Export Citation
  • Renold, M., C. C. Raible, M. Yoshimori, and T. F. Stocker, 2010: Simulated resumption of the North Atlantic meridional overturning circulation—Slow basin-wide advection and abrupt local convection. Quat. Sci. Rev., 29, 101112, doi:10.1016/j.quascirev.2009.11.005.

    • Search Google Scholar
    • Export Citation
  • Rooth, C., 1982: Hydrology and ocean circulation. Prog. Oceanogr., 11, 131149.

  • Saenko, O. A., A. J. Weaver, and J. M. Gregory, 2003: On the link between the two modes of the ocean thermohaline circulation and the formation of global-scale water masses. J. Climate, 16, 27972801.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., U. Mikolajewicz, and R. Voss, 1997: The stability of the North Atlantic thermohaline circulation in a coupled ocean-atmosphere general circulation model. Climate Dyn., 13, 325347.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and Coauthors, 2006: The large-scale freshwater cycle of the Arctic. J. Geophys. Res., 111, C11010, doi:10.1029/2005JC003424.

    • Search Google Scholar
    • Export Citation
  • Sijp, W. P., and M. H. England, 2006: Sensitivity of the Atlantic thermohaline circulation and its stability to basin-scale variations in vertical mixing. J. Climate, 19, 54675478.

    • Search Google Scholar
    • Export Citation
  • Sijp, W. P., M. H. England, and J. M. Gregory, 2012: Precise calculations of the existence of multiple AMOC equilibria in coupled climate models. Part I: Equilibrium states. J. Climate, 25, 282298.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and D. G. Wright, 1991a: Rapid transitions of the ocean’s deep circulation induced by changes in the surface water fluxes. Nature, 351, 729732.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and D. G. Wright, 1991b: A zonally averaged ocean model for the thermohaline circulation. Part II: Interocean circulation in the Pacific–Atlantic basin system. J. Phys. Oceanogr., 21, 17251739.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 2, 244230.

  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., J. R. Toggweiler, Y. Feliks, and K. Bryan, 1994: Instability of the thermohaline circulation with respect to mixed boundary conditions: Is it really a problem for realistic models? J. Phys. Oceanogr., 24, 217232.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and E. S. Sarachik, 1991: The role of mixed boundary conditions in numerical models of the ocean’s climate. J. Phys. Oceanogr., 21, 14701493.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and T. M. C. Hughes, 1992: Stability and variability of the thermohaline circulation and its links to climate. Trends Phys. Oceanogr.,1, 15–70.

  • Weaver, A. J., J. Marotzke, P. F. Cummins, and E. S. Sarachik, 1993: Stability and variability of the thermohaline circulation. J. Phys. Oceanogr., 23, 3960.

    • Search Google Scholar
    • Export Citation
  • Weber, S. L., and Coauthors, 2007: The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Climate Past, 3, 5164.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., W. P. M. De Ruijter, H. A. Dijkstra, and P. J. Van Leeuwen, 1999: Impact of interbasin exchange on the Atlantic overturning circulation. J. Phys. Oceanogr., 29, 22662284.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., C. A. Shields, W. G. Large, and J. J. Hack, 2006: The low-resolution CCSM3. J. Climate, 19, 25452566.

  • Yin, J., and R. J. Stouffer, 2007: Comparison of the stability of the Atlantic thermohaline circulation in two coupled atmosphere–ocean general circulation models. J. Climate, 20, 42934315.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., R. J. Greatbatch, and C. A. Lin, 1993: A reexamination of the polar halocline catastrophe and implications for coupled ocean–atmosphere modeling. J. Phys. Oceanogr., 23, 287299.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 6 6 6

A Diagnostic Indicator of the Stability of the Atlantic Meridional Overturning Circulation in CCSM3

View More View Less
  • 1 Center for Climatic Research and Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, Madison, Wisconsin
Restricted access

Abstract

A diagnostic indicator ΔMov is proposed in this paper to monitor the stability of the Atlantic meridional overturning circulation (AMOC). The ΔMov is a diagnostic for a basinwide salt-advection feedback and defined as the difference between the freshwater transport induced by the AMOC across the southern border of the Atlantic Ocean and the overturning liquid freshwater transport from the Arctic Ocean to the North Atlantic. As validated in the Community Climate System Model, version 3 (CCSM3), for an AMOC in the conveyor state, a positive ΔMov (freshwater convergence) in the Atlantic basin indicates a monostable AMOC and a negative ΔMov (freshwater divergence) indicates a bistable AMOC. Based on ΔMov, the authors investigate the AMOC stability in the Last Glacial Maximum (LGM) and analyze the modulation of the AMOC stability by an open/closed Bering Strait. Moreover, the authors estimate that the real AMOC is likely to be bistable in the present day, since some observations suggest a negative ΔMov (freshwater divergence) is currently in the Atlantic basin. However, this estimation is very sensitive to the choice of the observational data.

Corresponding author address: W. Liu, 1225 W. Dayton St., 1143, Madison, WI 53706. E-mail: wliu5@wisc.edu

Abstract

A diagnostic indicator ΔMov is proposed in this paper to monitor the stability of the Atlantic meridional overturning circulation (AMOC). The ΔMov is a diagnostic for a basinwide salt-advection feedback and defined as the difference between the freshwater transport induced by the AMOC across the southern border of the Atlantic Ocean and the overturning liquid freshwater transport from the Arctic Ocean to the North Atlantic. As validated in the Community Climate System Model, version 3 (CCSM3), for an AMOC in the conveyor state, a positive ΔMov (freshwater convergence) in the Atlantic basin indicates a monostable AMOC and a negative ΔMov (freshwater divergence) indicates a bistable AMOC. Based on ΔMov, the authors investigate the AMOC stability in the Last Glacial Maximum (LGM) and analyze the modulation of the AMOC stability by an open/closed Bering Strait. Moreover, the authors estimate that the real AMOC is likely to be bistable in the present day, since some observations suggest a negative ΔMov (freshwater divergence) is currently in the Atlantic basin. However, this estimation is very sensitive to the choice of the observational data.

Corresponding author address: W. Liu, 1225 W. Dayton St., 1143, Madison, WI 53706. E-mail: wliu5@wisc.edu
Save