• Alexander, M. A., U. S. Bhatt, J. E. Walsh, M. S. Timlin, J. S. Miller, and J. D. Scott, 2004: The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Climate, 17, 890905.

    • Search Google Scholar
    • Export Citation
  • Alexeev, V. A., P. L. Langen, and J. R. Bates, 2005: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Climate Dyn., 24, 655666, doi:10.1007/s00382-005-0018-3.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., L. Ferranti, F. Molteni, and T. N. Palmer, 2010: Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: Implications for long-range predictions. Quart. J. Roy. Meteor. Soc., 136, 16551664.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., R. Senan, M. Balmesada, L. Ferranti, Y. Orsolini, and A. Melsom, 2011: Sensitivity of summer 2-m temperature to sea ice conditions. Tellus, 63A, 324337, doi:10.1111/j.1600-0870.2010.00488.x.

    • Search Google Scholar
    • Export Citation
  • Bhatt, U. S., M. A. Alexander, D. S. Battisti, D. D. Houghton, and L. M. Keller, 1998: Atmosphere–ocean interaction in the North Atlantic: Near-surface climate variability. J. Climate, 11, 16151632.

    • Search Google Scholar
    • Export Citation
  • Bhatt, U. S., M. A. Alexander, C. Deser, J. E. Walsh, J. S. Miller, M. S. Timlin, J. Scott, and R. A. Tomas, 2008: The atmospheric response to realistic reduced summer arctic sea ice anomalies. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 91–110.

  • Bluestein, H. B., 1993: Observations and Theory of Weather Systems. Vol. 2, Synoptic–Dynamic Meteorology in Midlatitudes, Oxford University Press, 594 pp.

  • Blüthgen, J., R. Gerdes, and M. Werner, 2012: Atmospheric response to the extreme Arctic sea ice conditions in 2007. Geophys. Res. Lett., 39, L02707, doi:10.1029/2011GL050486.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004: Scientific description of the sea ice component in the Community Climate System Model, version 3. NCAR Tech. Note NCAR/TN-463+STR, 70 pp.

  • Collins, W. D., and Coauthors, 2006a: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Collins, W. D., and Coauthors, 2006b: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19, 21442161.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., and F. Nishio, 2008: Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res.,113, C02S07, doi:10.1029/2007JC004257.

  • Dammann, D. O., 2011: Role of arctic sea ice variability in climate models. M.S. thesis, Department of Atmospheric Sciences, University of Alaska Fairbanks, 152 pp. [Available online at ffden-2.phys.uaf.edu/atm/Students/theses/Dammann_MS.pdf.]

  • Deser, C., J. E. Walsh, and M. S. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate, 13, 617633.

    • Search Google Scholar
    • Export Citation
  • Deser, C., G. Magnusdottir, R. Saravanan, and A. Phillips, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate, 17, 877889.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., K. W. Oleson, G. Bonan, F. Hoffman, P. Thornton, M. Vertenstein, Z.-L. Yang, and X. Zeng, 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate, 19, 23022324.

    • Search Google Scholar
    • Export Citation
  • Druckenmiller, M. L., H. Eicken, J. C. George, and L. Brower, 2010: Assessing the shorefast ice: Inupiat whaling trails off Barrow, Alaska. SIKU: Knowing Our Ice—Documenting Inuit Sea Ice Knowledge and Use, I. Krupnik et al., Eds., Springer-Verlag, 203–228.

  • Fang, Z., and J. M. Wallace, 1994: Arctic sea ice variability on a timescale of weeks and its relation to atmospheric forcing. J. Climate, 7, 18971914.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., J. M. Caron, G. Danabasoglu, K. W. Oleson, C. Bitz, and J. E. Truesdale, 2006: CCSM–CAM3 climate simulation sensitivity to changes in horizontal resolution. J. Climate, 19, 22672289.

    • Search Google Scholar
    • Export Citation
  • Higgins, M. E., and J. J. Cassano, 2012: Northern Alaskan land surface response to reduced arctic sea ice extent. Climate Dyn., 38, 20992113, doi:10.1007/s00382-011-1095-0.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, and J. L. Schramm, 2006a: Influence of the sea ice thickness distribution on polar climate in CCSM3. J. Climate, 19, 23982414.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, and B. Tremblay, 2006b: Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett., 33, L23503, doi:10.1029/2006GL028024.

    • Search Google Scholar
    • Export Citation
  • Honda, M., K. Yamazaki, H. Nakamura, and K. Takeuchi, 1999: Dynamic and thermodynamic characteristics of the atmospheric response to anomalous sea-ice extent in the Sea of Okhotsk. J. Climate, 12, 33473358.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual version 4.1. Los Alamos National Laboratory Rep. LA-CC-06-012, 76 pp. [Available online at http://oceans11.lanl.gov/trac/CICE.]

  • Kauffman, B. G., and W. G. Large, 2002: The CCSM coupler, version 5.0.1: Combined user’s guide, source code reference, and scientific description. National Center for Atmospheric Research, 46 pp. [Available online at http://www.cesm.ucar.edu/models/ccsm2.0.1/cpl5/users_guide.pdf.]

  • Knell, N. F., 2008: The reemergence of the Arctic as a strategic location. Monograph, School of Advanced Military Studies, U.S. Army Command and General Staff College, 111 pp. [Available online at http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA494394.]

  • Kumar, A., and Coauthors, 2010: Contribution of sea ice loss to Arctic amplification. Geophys. Res. Lett., 37, L21701, doi:10.1029/2010GL045022.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., and D. A. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett., 36, L15501, doi:10.1029/2009GL039035.

    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Climate, 17, 857876.

    • Search Google Scholar
    • Export Citation
  • Massonnet, F., T. Fichefet, H. Goosse, C. M. Bitz, G. Philippon-Berthier, M. M. Holland, and P.-Y. Barriat, 2012: Constraining projections of summer Arctic sea ice. Cryosphere, 6, 13831394 , doi:10.5194/tc-6-1383-2012.

    • Search Google Scholar
    • Export Citation
  • Matthewman, N. J., and G. Magnusdottir, 2011: Observed interaction between Pacific sea ice and the western Pacific pattern on intraseasonal time scales. J. Climate, 24, 5031–5042.

    • Search Google Scholar
    • Export Citation
  • Orsolini, Y., R. Senan, R. Benestad, and A. Melsom, 2011: Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean–atmosphere hindcasts. Climate Dyn., 38, 24372448, doi:10.1007/s00382-011-1169-z.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., K. R. Wood, and M. Wang, 2011: Warm Arctic–cold continents: Climate impacts of the newly open Arctic Sea. Polar Res., 30, 15787, doi:10.3402/polar.v30i0.15787.

    • Search Google Scholar
    • Export Citation
  • Peng, S. L., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12, 13931408.

    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents–Kara sea ice and cold winter extreme over northern continents. J. Geophys. Res., 115, D21111, doi:10.1029/2009JD013568.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., A. V. Pnyushkov, R. Rember, V. V. Ivanov, Y.-D. Lenn, L. Padman, and E. C. Carmack, 2012: Mooring-based observations of double-diffusive staircases over the Laptev Sea slope. J. Phys. Oceanogr.,42, 95–109.

  • Rinke, A., W. Maslowski, K. Dethloff, and J. Clement, 2006: Influence of sea ice on the atmosphere: A study with an Arctic atmospheric regional climate model. J. Geophys. Res., 111, D16103, doi:10.1029/2005JD006957.

    • Search Google Scholar
    • Export Citation
  • Rothrock, D. A., D. B. Percival, and M. Wensnahan, 2008: The decline in arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data. J. Geophys. Res., 113, C05003, doi:10.1029/2007JC004252.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2000: Changes of probability associated with El Niño. J. Climate, 13, 42684286.

  • Sasaki, Y. N., and S. Minobe, 2005: Seasonally dependent interannual variability of sea ice in the Bering Sea and its relation to atmospheric fluctuations. J. Geophys. Res., 110, C05011, doi:10.1029/2004JC002486.

    • Search Google Scholar
    • Export Citation
  • Schreyer, H. L., D. L. Sulsky, L. B. Munday, M. D. Coon, and R. Kwok, 2006: Elastic-decohesive constitutive model for sea ice. J. Geophys. Res., 111, C11S26, doi:10.1029/2005JC003334.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett., 37, L16707, doi:10.1029/2010gl044136.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, and I. Simmonds, 2012: Local and remote controls on observed Arctic warming. Geophys. Res. Lett., 39, L10709, doi:10.1029/2012GL051598.

    • Search Google Scholar
    • Export Citation
  • Sedláček, J., R. Knutti, O. Martius, and U. Beyerle, 2012: Impact of a reduced arctic sea ice cover on ocean and atmospheric properties. J. Climate, 25, 307319.

    • Search Google Scholar
    • Export Citation
  • Seierstad, I., and J. Bader, 2009: Impact of a projected future Arctic sea ice reduction on extratropical storminess and the NAO. Climate Dyn., 33, 937943, doi:10.1007/s00382-008-0463-x.

    • Search Google Scholar
    • Export Citation
  • Seiffert, R., and J.-S. von Storch, 2008: Impact of atmospheric small-scale fluctuations on climate sensitivity. Geophys. Res. Lett., 35, L10704, doi:10.1029/2008GL033483.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, doi:10.1016/j.gloplacha.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Singarayer, J. S., J. L. Bamber, and P. J. Valdes, 2006: Twenty-first-century climate impacts from a declining Arctic sea ice cover. J. Climate, 19, 11091125.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., and P. R. Gent, 2002: Reference manual for the Parallel Ocean Program (POP), ocean component of the Community Climate System Model (CCSM2.0). Tech. Rep. LAUR-02-2484, 73 pp. [Available online at http://www.cesm.ucar.edu/models/ccsm2.0.1/pop/doc/sci_ref_manual.pdf.]

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Strey, S. T., W. L. Chapman, and J. E. Walsh, 2010: The 2007 sea ice minimum: Impacts on the Northern Hemisphere atmosphere in late autumn and early winter. J. Geophys. Res., 115, D23103, doi:10.1029/2009jd013294.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. Serreze, S. Drobot, S. Gearheard, M. Holland, J. Maslanik, W. Meier, and T. Scambos, 2008: Arctic sea ice extent plummets in 2007. Eos, Trans. Amer. Geophys. Union, 89, 13, doi:10.1029/2008EO020001.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S. A., U. S. Bhatt, and V. A. Alexeev, 2011: Factors influencing simulated changes in future arctic cloudiness. J. Climate, 24, 48174830.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 8 8 8

Impact of Daily Arctic Sea Ice Variability in CAM3.0 during Fall and Winter

View More View Less
  • 1 Department of Atmospheric Sciences, College of Natural Sciences and Mathematics, Arctic Region Supercomputing Center, University of Alaska Fairbanks, Fairbanks, Alaska
  • | 2 Department of Atmospheric Sciences, College of Natural Sciences and Mathematics, and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska
  • | 3 Danish Climate Centre, Danish Meteorological Institute, Copenhagen, Denmark
  • | 4 Arctic Region Supercomputing Center, University of Alaska Fairbanks, Fairbanks, Alaska
  • | 5 International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska
Restricted access

Abstract

Climate projections suggest that an ice-free summer Arctic Ocean is possible within several decades and with this comes the prospect of increased ship traffic and safety concerns. The daily sea ice concentration tendency in five Coupled Model Intercomparison Project phase 5 (CMIP5) simulations is compared with observations to reveal that many models underestimate this quantity that describes high-frequency ice movements, particularly in the marginal ice zone. To investigate whether high-frequency ice variability impacts the atmosphere, the Community Atmosphere Model, version 3.0 (CAM3.0), is forced by sea ice with and without daily fluctuations. Two 100-member ensemble experiments with daily varying (DAILY) and smoothly varying (SMTH) sea ice are conducted, along with a climatological control, for an anomalously low ice period (August 2006–November 2007). Results are presented for three periods: September 2006, October 2006, and December–February (DJF) 2006/07. The atmospheric response differs between DAILY and SMTH. In September, sea ice differences lead to an anomalous high and weaker storm activity over northern Europe. During October, the ice expands equatorward faster in DAILY than SMTH in the Siberian seas and leads to a local response of near-surface cooling. In DJF, there is a 1.5-hPa positive sea level pressure anomaly over North America, leading to anomalous northerly flow and anomalously cool continental U.S. temperatures. While the atmospheric responses are modest, the differences arising from high temporal frequency ice variability cannot be ignored. Increasing the accuracy of coupled model sea ice variations on short time scales is needed to improve short-term coupled model forecasts.

Corresponding author address: Uma S. Bhatt, Department of Atmospheric Science, College of Natural Sciences and Mathematics, Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775-7320. E-mail: usbhatt@alaska.edu

Abstract

Climate projections suggest that an ice-free summer Arctic Ocean is possible within several decades and with this comes the prospect of increased ship traffic and safety concerns. The daily sea ice concentration tendency in five Coupled Model Intercomparison Project phase 5 (CMIP5) simulations is compared with observations to reveal that many models underestimate this quantity that describes high-frequency ice movements, particularly in the marginal ice zone. To investigate whether high-frequency ice variability impacts the atmosphere, the Community Atmosphere Model, version 3.0 (CAM3.0), is forced by sea ice with and without daily fluctuations. Two 100-member ensemble experiments with daily varying (DAILY) and smoothly varying (SMTH) sea ice are conducted, along with a climatological control, for an anomalously low ice period (August 2006–November 2007). Results are presented for three periods: September 2006, October 2006, and December–February (DJF) 2006/07. The atmospheric response differs between DAILY and SMTH. In September, sea ice differences lead to an anomalous high and weaker storm activity over northern Europe. During October, the ice expands equatorward faster in DAILY than SMTH in the Siberian seas and leads to a local response of near-surface cooling. In DJF, there is a 1.5-hPa positive sea level pressure anomaly over North America, leading to anomalous northerly flow and anomalously cool continental U.S. temperatures. While the atmospheric responses are modest, the differences arising from high temporal frequency ice variability cannot be ignored. Increasing the accuracy of coupled model sea ice variations on short time scales is needed to improve short-term coupled model forecasts.

Corresponding author address: Uma S. Bhatt, Department of Atmospheric Science, College of Natural Sciences and Mathematics, Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775-7320. E-mail: usbhatt@alaska.edu
Save