• Ashbaugh, L. L., W. C. Malm, and W. Z. Sadeh, 1985: A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmos. Environ., 19, 12631270.

    • Search Google Scholar
    • Export Citation
  • Bertler, N. A. N., P. J. Barrett, P. A. Mayewski, R. L. Fogt, K. J. Kreutz, and J. Shulmeister, 2004: El Niño suppresses Antarctic warming. Geophys. Res. Lett., 31, L15207, doi:10.1029/2004GL020749.

    • Search Google Scholar
    • Export Citation
  • Bertler, N. A. N., T. R. Naish, H. Oerter, S. Kipfstuhl, P. J. Barrett, P. A. Mayewski, and K. Kreutz, 2006: The effects of joint ENSO–Antarctic Oscillation forcing on the McMurdo dry valleys, Antarctica. Antarct. Sci., 18, 507514.

    • Search Google Scholar
    • Export Citation
  • Bertler, N. A. N., P. A. Mayewski, and L. Carter, 2011: Cold conditions in Antarctica during the Little Ice Age—Implications for abrupt climate change mechanisms. Earth Planet. Sci. Lett., 308, 4151, doi:10.1016/j.epsl.2011.05.021.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., 1991: Mesoscale cyclogenesis over the southwestern Ross Sea linked to strong katabatic winds. Mon. Wea. Rev., 119, 17361753.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., R. L. Fogt, K. I. Hodges, and J. E. Walsh, 2007: A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J. Geophys. Res., 112, D10111, doi:10.1029/2006JD007859.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209.

    • Search Google Scholar
    • Export Citation
  • Carrasco, J. F., D. H. Bromwich, and A. J. Monaghan, 2003: Distribution and characteristics of mesoscale cyclones in the Antarctic: Ross Sea eastward to the Weddell Sea. Mon. Wea. Rev., 131, 289301.

    • Search Google Scholar
    • Export Citation
  • Cheng, M. D., P. K. Hopke, L. Barrie, A. Rippe, M. Olson, and S. Landsberger, 1993: Qualitative determination of source regions of aerosol in Canadian High Arctic. Environ. Sci. Technol., 27, 20632071, doi:10.1021/es00047a011.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Fernandoy, F., H. Meyer, and M. Tonelli, 2012: Stable water isotopes of precipitation and firn cores from the northern Antarctic Peninsula region as a proxy for climate reconstruction. Cryosphere, 6, 313330.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., A. J. Wovrosh, R. A. Langen, and I. Simmonds, 2012: The characteristic variability and connection to the underlying synoptic activity of the Amundsen–Bellingshausen Seas low. J. Geophys. Res., 117, D07111, doi:10.1029/2011JD017337.

    • Search Google Scholar
    • Export Citation
  • Helsen, M. M., R. S. W. van de Wal, M. R. van den Broeke, V. Masson-Delmotte, H. A. J. Meijer, M. P. Scheele, and M. Werner, 2006: Modeling the isotopic composition of Antarctic snow using backward trajectories: Simulation of snow pit records. J. Geophys. Res., 111, D15109, doi:10.1029/2005JD006524.

    • Search Google Scholar
    • Export Citation
  • Helsen, M. M., R. S. W. Van de Wal, and M. R. Van den Broeke, 2007: The isotopic composition of present-day Antarctic snow in a Lagrangian atmospheric simulation. J. Climate, 20, 739756.

    • Search Google Scholar
    • Export Citation
  • Jouzel, J., and Coauthors, 1997: Validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res., 102 (C12), 26 47126 487.

    • Search Google Scholar
    • Export Citation
  • Jouzel, J., and Coauthors, 2007: Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317, 793–796, doi:10.1126/science.1141038.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • King, J. C., and J. Turner, 1997: Antarctic Meteorology and Climatology. 1st ed. Cambridge University Press, 422 pp.

  • Markle, B. R., N. A. N. Bertler, K. E. Sinclair, and S. B. Sneed, 2012: Synoptic variability in the Ross Sea region, Antarctica, as seen from back-trajectory modeling and ice core analysis. J. Geophys. Res., 117, D02113, doi:10.1029/2011JD016437.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143.

  • Marshall, G. J., 2009: On the annual and semi-annual cycles of precipitation across Antarctica. Int. J. Climatol., 29, 22982308, doi:10.1002/joc.1810.

    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., M. Delmotte, V. Morgan, D. Etheridge, T. van Ommen, S. Tartarin, and G. Hoffmann, 2003: Recent southern Indian Ocean climate variability inferred from a Law Dome ice core: New insights for the interpretation of coastal Antarctic isotopic records. Climate Dyn., 21, 153166.

    • Search Google Scholar
    • Export Citation
  • Mayewski, P. A., and Coauthors, 2005: The International Trans- Antarctic Scientific Expedition (ITASE): An overview. Ann. Glaciol., 41, 180185, doi:10.3189/172756405781813159.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., and Coauthors, 2006: Insignificant change in Antarctic snowfall since the International Geophysical Year. Science, 313, 827831, doi:10.1126/science.1128243.

    • Search Google Scholar
    • Export Citation
  • Nicolas, J. P., and D. H. Bromwich, 2011: Climate of West Antarctica and influence of marine air intrusions. J. Climate, 24, 4966.

  • Noone, D., and I. Simmonds, 1998: Implications for the interpretation of ice-core isotope data from analysis of modelled Antarctic precipitation. Ann. Glaciol., 27, 398402.

    • Search Google Scholar
    • Export Citation
  • Noone, D., and I. Simmonds, 2004: Sea ice control of water isotope transport to Antarctica and implications for ice core interpretation. J. Geophys. Res., 109, D07105, doi:10.1029/2003JD004228.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and D. J. Cavalieri, 2012: Antarctic sea ice variability and trends, 1979–2010. Cryosphere Discuss., 6, 931956, doi:10.5194/tcd-6-931-2012.

    • Search Google Scholar
    • Export Citation
  • Pritchard, H. D., R. J. Arthern, D. G. Vaughan, and L. A. Edwards, 2009: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461, 971975.

    • Search Google Scholar
    • Export Citation
  • Reijmer, C. H., M. R. van den Broeke, and M. P. Scheele, 2002: Air parcel trajectories and snowfall related to five deep drilling locations in Antarctica based on the ERA-15 dataset. J. Climate, 15, 19571968.

    • Search Google Scholar
    • Export Citation
  • Rhodes, R. H., N. A. N. Bertler, J. A. Baker, H. C. Steen-Larsen, S. B. Sneed, U. Morgenstern, and S. J. Johnsen, 2012: Little Ice Age climate and oceanic conditions of the Ross Sea, Antarctica from a coastal ice core record. Climate Past Discuss., 8, 215262.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., J. L. Bamber, M. R. van den Broeke, C. Davis, Y. Li, W. J. van de Berg, and E. van Meijgaard, 2008: Recent Antarctic ice mass loss from radar interferometry and regional climate modeling. Nat. Geosci., 1, 106110.

    • Search Google Scholar
    • Export Citation
  • Scarchilli, C., M. Frezzotti, and P. M. Ruti, 2011: Snow precipitation at four ice core sites in East Antarctica: Provenance, seasonality and blocking factors. Climate Dyn., 37, 21072125, doi:10.1007/s00382-010-0946-4.

    • Search Google Scholar
    • Export Citation
  • Schlosser, E., H. Oerter, V. Masson-Delmotte, and C. Reijmer, 2008: Atmospheric influence on the deuterium excess signal in polar firn: Implications for ice-core interpretation. J. Glaciol., 54, 117124, doi:10.3189/002214308784408991.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., C. Deser, and Y. Okumura, 2012: An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Climate Dyn., 38, 323347, doi:10.1007/s00382-010-0985-x.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and D. A. Jones, 1998: The mean structure and temporal variability of the semiannual oscillation in the southern extratropics. Int. J. Climatol., 18, 473504.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., K. Keay, and E.-P. Lim, 2003: Synoptic activity in the seas around Antarctica. Mon. Wea. Rev., 131, 272288.

  • Sinclair, K. E., N. A. N. Bertler, and W. J. Trompetter, 2010: Synoptic controls on precipitation pathways and snow delivery to high-accumulation ice core sites in the Ross Sea region, Antarctica. J. Geophys. Res., 115, D22112, doi:10.1029/2010JD014383.

    • Search Google Scholar
    • Export Citation
  • Sinclair, K. E., N. A. N. Bertler, and T. D. van Ommen, 2012: Twentieth century surface temperature trends in the western Ross Sea, Antarctica: Evidence from a high-resolution ice core. J. Climate, 25, 36293636.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., and A. Stohl, 2009: Asymmetries in the moisture origin of Antarctic precipitation. Geophys. Res. Lett., 36, L22803, doi:10.1029/2009GL040242.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., D. G. Martinson, R. C. Smith, X. Yuan, and D. J. Rind, 2008: Trends in Antarctic sea ice retreat and advance and their relation to El Niño–Southern Oscillation and the southern annular mode. J. Geophys. Res., 113, C03S90, doi:10.1029/2007JC004269.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., R. Massom, D. Rind, and D. Martinson, 2012: Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophys. Res. Lett., 39, L05502, doi:10.1029/2012GL050874.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and H. Sodemann, 2010: Characteristics of atmospheric transport into the Antarctic troposphere. J. Geophys. Res., 115, D02305, doi:10.1029/2009JD012536.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., T. Yamanouchi, and H. Motoyama, 2008: Moisture transport to Syowa and Dome Fuji stations in Antarctica. J. Geophys. Res., 113, D24114, doi:10.1029/2008JD009794.

    • Search Google Scholar
    • Export Citation
  • Thomas, E. R., and T. J. Bracegirdle, 2009: Improving ice core interpretation using in situ and reanalysis data. J. Geophys. Res., 114, D20116, doi:10.1029/2009JD012263.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. C., 1969: The coreless winter at Scott Base, Antarctica. Quart. J. Roy. Meteor. Soc., 95, 404407, doi:10.1002/qj.49709540413.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Turner, J., 2004: The El Niño–Southern Oscillation and Antarctica. Int. J. Climatol., 24, 131, doi:10.1002/joc.965.

  • van den Broeke, M. R., 1998: The semiannual oscillation and Antarctic climate, Part 1: Influence on near-surface temperatures (1957–1979). Antarct. Sci., 10, 175183.

    • Search Google Scholar
    • Export Citation
  • Zeng, Y., and P. K. Hopke, 1989: A study of the sources of acid precipitation in Ontario, Canada. Atmos. Environ., 23, 14991509.

  • Zhao, W., P. K. Hopke, and L. Zhou, 2007: Spatial distribution of source locations for particulate nitrate and sulfate in the upper Midwestern United States. Atmos. Environ., 41, 18311847.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1 1 1
PDF Downloads 0 0 0

Seasonality of Airmass Pathways to Coastal Antarctica: Ramifications for Interpreting High-Resolution Ice Core Records

View More View Less
  • 1 National Isotope Centre, GNS Science, Wellington, New Zealand
  • | 2 National Isotope Centre, GNS Science, and Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand
  • | 3 National Isotope Centre, GNS Science, Wellington, New Zealand
Restricted access

Abstract

Understanding airmass pathways is critical for ice core interpretation, and the ability to determine the broadscale characteristics and seasonality of synoptic-scale flow using paleoclimate records offers great potential to improve the understanding of past atmospheric circulation. The dominant airmass pathways to a coastal Antarctic ice core site at the Whitehall Glacier in the Ross Sea are modeled using snowfall and high-resolution stable isotope data between 1979 and 2006, combined with back trajectories produced from both NCEP–NCAR and ECMWF Interim Re-Analysis (ERA-Interim) data. Back trajectories generated from both datasets produce comparable results. They show that high snowfall is associated with cyclonic airflow in the Ross Sea with a strong meridional component along the western Ross Sea coast. Over a 28-yr time frame, trajectories also reveal a clear distinction between flow paths associated with above- and below-average annual temperatures (high and low δD) in the ice core record. In cold months (low δD), when there is a strengthened trough of low pressure around the continent, synoptically driven incursions of marine air across West Antarctica and trajectories originating from coastal East Antarctica are dominant. Conversely, in warmer months (high δD), airmass pathways are centered over the Ross Sea and the adjacent Southern Ocean. These trajectories are slower moving and are expected to draw marine moisture from high-latitude seasonally open oceans.

Corresponding author address: Kate Sinclair, National Isotope Centre, GNS Science, 30 Gracefield Rd., P.O. Box 30-386, Lower Hutt 5040, New Zealand. E-mail: k.sinclair@gns.cri.nz

Abstract

Understanding airmass pathways is critical for ice core interpretation, and the ability to determine the broadscale characteristics and seasonality of synoptic-scale flow using paleoclimate records offers great potential to improve the understanding of past atmospheric circulation. The dominant airmass pathways to a coastal Antarctic ice core site at the Whitehall Glacier in the Ross Sea are modeled using snowfall and high-resolution stable isotope data between 1979 and 2006, combined with back trajectories produced from both NCEP–NCAR and ECMWF Interim Re-Analysis (ERA-Interim) data. Back trajectories generated from both datasets produce comparable results. They show that high snowfall is associated with cyclonic airflow in the Ross Sea with a strong meridional component along the western Ross Sea coast. Over a 28-yr time frame, trajectories also reveal a clear distinction between flow paths associated with above- and below-average annual temperatures (high and low δD) in the ice core record. In cold months (low δD), when there is a strengthened trough of low pressure around the continent, synoptically driven incursions of marine air across West Antarctica and trajectories originating from coastal East Antarctica are dominant. Conversely, in warmer months (high δD), airmass pathways are centered over the Ross Sea and the adjacent Southern Ocean. These trajectories are slower moving and are expected to draw marine moisture from high-latitude seasonally open oceans.

Corresponding author address: Kate Sinclair, National Isotope Centre, GNS Science, 30 Gracefield Rd., P.O. Box 30-386, Lower Hutt 5040, New Zealand. E-mail: k.sinclair@gns.cri.nz
Save