• Brown, J., O. Ferrians Jr., J. Heginbottom, and E. Melnikov, 1998: Circum-Arctic map of permafrost and ground-ice conditions. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/docs/fgdc/ggd318_map_circumarctic/index.html.]

  • Brown, J., K. Hinkel, and F. Nelson, 2000: The Circumpolar Active Layer Monitoring (CALM) program: Research designs and initial results. Polar Geogr., 24, 165258, doi:10.1080/10889370009377698.

    • Search Google Scholar
    • Export Citation
  • Burke, E. J., I. P. Hartley, and C. D. Jones, 2012: Uncertainties in the global temperature change caused by carbon release from permafrost thawing. Cryosphere Discuss., 6, 13671404, doi:10.5194/tcd-6-1367-2012.

    • Search Google Scholar
    • Export Citation
  • Burn, C. R., and F. E. Nelson, 2006: Comment on “A projection of severe near-surface permafrost degradation during the 21st century” by David M. Lawrence and Andrew G. Slater. Geophys. Res. Lett., 33, L21503, doi:10.1029/2006GL027077.

    • Search Google Scholar
    • Export Citation
  • Ciais, P., and Coauthors, 2012: Large inert carbon pool in the terrestrial biosphere during the last glacial maximum. Nat. Geosci., 5, 7479, doi:10.1038/ngeo1324.

    • Search Google Scholar
    • Export Citation
  • Cox, P., R. Betts, C. Bunton, R. Essery, P. Rowntree, and J. Smith, 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15, 183203.

    • Search Google Scholar
    • Export Citation
  • DeConto, R. M., S. Galeotti, M. Pagani, D. Tracy, K. Schaefer, T. Zhang, D. Pollard, and D. J. Beerling, 2012: Past extreme warming events linked to massive carbon release from thawing permafrost. Nature, 484, 8791, doi:10.1038/nature10929.

    • Search Google Scholar
    • Export Citation
  • Dunnea, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 6646–6665.

    • Search Google Scholar
    • Export Citation
  • Essery, R., M. Best, R. Betts, P. Cox, and C. Taylor, 2003: Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J. Hydrometeor., 4, 530543.

    • Search Google Scholar
    • Export Citation
  • Gilichinsky, D., R. Barry, S. Bykhovets, V. Sorokovikov, T. Zhang, S. Zudin, and D. Fedorov-Davydov, 1998: A century of temperature observations of soil climate: Methods of analysis and long-term trends. Proc. Seventh Int. Conf. on Permafrost, Yellowknife, Northwest Territories, Canada, International Permafrost Association, 23–27.

  • Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett., 33, L03502, doi:10.1029/2005GL025127.

    • Search Google Scholar
    • Export Citation
  • Harden, J. W., and Coauthors, 2012: Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett., 39, L15704, doi:10.1029/2012GL051958.

    • Search Google Scholar
    • Export Citation
  • Hinzman, L., D. Goering, and D. Kane, 1998: A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions. J. Geophys. Res., 103 (D22), 28 97528 991.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, doi:10.1007/s00382-003-0332-6.

    • Search Google Scholar
    • Export Citation
  • Ji, J., 1995: A climate-vegetation interaction model: Simulating physical and biological processes at the surface. J. Biogeogr., 22, 445451.

    • Search Google Scholar
    • Export Citation
  • Koven, C. D., P. Friedlingstein, P. Ciais, D. Khvorostyanov, G. Krinner, and C. Tarnocai, 2009: On the formation of high-latitude soil carbon stocks: The effects of cryoturbation and insulation by organic matter in a land surface model. Geophys. Res. Lett., 36, L21501, doi:10.1029/2009GL040150.

    • Search Google Scholar
    • Export Citation
  • Koven, C. D., B. Ringeval, P. Friedlingstein, P. Ciais, P. Cadule, D. Khvorostyanov, G. Krinner, and C. Tarnocai, 2011: Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl. Acad. Sci. USA, 108, 14 76914 774, doi:10.1073/pnas.1103910108.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., and Coauthors, 2005: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles, 19, GB1015, doi:10.1029/2003GB002199.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and A. G. Slater, 2005: A projection of severe near-surface permafrost degradation during the 21st century. Geophys. Res. Lett., 32, L24401, doi:10.1029/2005GL025080.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and A. G. Slater, 2008: Incorporating organic soil into a global climate model. Climate Dyn., 30, 145160, doi:10.1007/s00382-007-0278-1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the community land model. J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS000045.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., A. G. Slater, and S. C. Swenson, 2012: Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. J. Climate, 25, 22072225.

    • Search Google Scholar
    • Export Citation
  • Luo, Y. Q., and Coauthors, 2012: A framework of benchmarking land models. Biogeosci. Discuss., 9, 18991944, doi:10.5194/bgd-9-1899-2012.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Nicolsky, D. J., V. E. Romanovsky, V. A. Alexeev, and D. M. Lawrence, 2007: Improved modeling of permafrost dynamics in a GCM land-surface scheme. Geophys. Res. Lett., 34, L08501, doi:10.1029/2007GL029525.

    • Search Google Scholar
    • Export Citation
  • Nicolsky, D. J., V. E. Romanovsky, and G. G. Panteleev, 2009: Estimation of soil thermal properties using in-situ temperature measurements in the active layer and permafrost. Cold Reg. Sci. Technol., 55, 120129, doi:10.1016/j.coldregions.2008.03.003.

    • Search Google Scholar
    • Export Citation
  • Outcalt, S., F. Nelson, and K. Hinkel, 1990: The zero-curtain effect: Heat and mass-transfer across an isothermal region in freezing soil. Water Resour. Res., 26, 15091516.

    • Search Google Scholar
    • Export Citation
  • Poutou, E., G. Krinner, C. Genthon, and N. de Noblet-Ducoudre, 2004: Role of soil freezing in future boreal climate change. Climate Dyn., 23, 621639, doi:10.1007/s00382-004-0459-0.

    • Search Google Scholar
    • Export Citation
  • Raddatz, T. J., and Coauthors, 2007: Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? Climate Dyn., 29, 565574, doi:10.1007/s00382-007-0247-8.

    • Search Google Scholar
    • Export Citation
  • Rinke, A., P. Kuhry, and K. Dethloff, 2008: Importance of a soil organic layer for Arctic climate: A sensitivity study with an Arctic RCM. Geophys. Res. Lett., 35, L13709, doi:10.1029/2008GL034052.

    • Search Google Scholar
    • Export Citation
  • Riseborough, D., N. Shiklomanov, B. Etzelmuller, S. Gruber, and S. Marchenko, 2008: Recent advances in permafrost modelling. Permafrost Periglacial Processes, 19, 137156, doi:10.1002/ppp.615.

    • Search Google Scholar
    • Export Citation
  • Romanovsky, V. E., 2010: Development of a network of permafrost observatories in North America and Russia: The US contribution to the international polar year. Advanced Cooperative Arctic Data and Information Service, Boulder, CO, digital media. [Available online at http://www.aoncadis.org/dataset/org.nsf.aon.cadis.Hydrology_and_Terrestrial_Cryosphere.Permafrost_Observatories.html.]

  • Romanovsky, V. E., and T. E. Osterkamp, 1997: Thawing of the active layer on the coastal plain of the Alaskan arctic. Permafrost Periglacial Processes, 8, 122.

    • Search Google Scholar
    • Export Citation
  • Romanovsky, V. E., S. L. Smith, and H. H. Christiansen, 2010: Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: A synthesis. Permafrost Periglacial Processes, 21, 106116, doi:10.1002/ppp.689.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., and F. Abramopoulos, 1997: Land-surface model development for the GISS GCM. J. Climate, 10, 20402054.

  • Schaefer, K., T. Zhang, A. G. Slater, L. Lu, A. Etringer, and I. Baker, 2009: Improving simulated soil temperatures and soil freeze/thaw at high-latitude regions in the Simple Biosphere/Carnegie-Ames-Stanford Approach model. J. Geophys. Res., 114, F02021, doi:10.1029/2008JF001125.

    • Search Google Scholar
    • Export Citation
  • Schaefer, K., T. Zhang, L. Bruhwiler, and A. P. Barrett, 2011: Amount and timing of permafrost carbon release in response to climate warming. Tellus, 63B, 165180, doi:10.1111/j.1600-0889.2011.00527.x.

    • Search Google Scholar
    • Export Citation
  • Schneider von Deimling, T., M. Meinshausen, A. Levermann, V. Huber, K. Frieler, D. M. Lawrence, and V. Brovkin, 2012: Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences, 9, 649665, doi:10.5194/bg-9-649-2012.

    • Search Google Scholar
    • Export Citation
  • Shiklomanov, N. I., O. A. Anisimov, T. Zhang, S. Marchenko, F. E. Nelson, and C. Oelke, 2007: Comparison of model-produced active layer fields: Results for northern Alaska. J. Geophys. Res., 112, F02S10, doi:10.1029/2006JF000571.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., and D. M. Lawrence, 2013: Diagnosing present and future permafrost from climate models. J. Climate, in press.

  • Slater, A. G., and Coauthors, 2001: The representation of snow in land surface schemes: Results from PILPS 2(d). J. Hydrometeor., 2, 725.

    • Search Google Scholar
    • Export Citation
  • Stine, A. R., P. Huybers, and I. Y. Fung, 2009: Changes in the phase of the annual cycle of surface temperature. Nature, 457, 435440, doi:10.1038/nature07675.

    • Search Google Scholar
    • Export Citation
  • Takata, K., S. Emori, and T. Watanabe, 2003: Development of the minimal advanced treatments of surface interaction and runoff. Global Planet. Change, 38, 209222, doi:10.1016/S0921-8181(03)00030-4.

    • Search Google Scholar
    • Export Citation
  • Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov, 2009: Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cycles, 23, GB2023, doi:10.1029/2008GB003327.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. PCMDI Tech. Rep., 33 pp. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf.]

  • USDA Soil Survey Staff, 1998: Keys to Soil Taxonomy. 8th ed. U.S. Dept. of Agriculture, Washington, DC, 326 pp.

  • Verseghy, D. L., 1991: CLASS—A Canadian land surface scheme for GCMS. I. Soil model. Int. J. Climatol., 11, 111133.

  • Volodin, E., N. Dianskii, and A. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Atmos. Oceanic Phys., 46, 414431, doi:10.1134/S000143381004002X.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the meteorological research institute: MRI-CGCM3 – Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., R. Barry, and D. Gilichinsky, 2001: Russian historical soil temperature data. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/arcss078.html.]

  • Zhang, T., O. W. Frauenfeld, and R. G. Barry, 2006: Time series of active layer thickness in the Russian Arctic, 1930–1990. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/arcss160.html.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 79 79 79
PDF Downloads 50 50 50

Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models

View More View Less
  • 1 Lawrence Berkeley National Laboratory, Berkeley, California
Restricted access

Abstract

The authors analyze global climate model predictions of soil temperature [from the Coupled Model Intercomparison Project phase 5 (CMIP5) database] to assess the models’ representation of current-climate soil thermal dynamics and their predictions of permafrost thaw during the twenty-first century. The authors compare the models’ predictions with observations of active layer thickness, air temperature, and soil temperature and with theoretically expected relationships between active layer thickness and air temperature annual mean- and seasonal-cycle amplitude. Models show a wide range of current permafrost areas, active layer statistics (cumulative distributions, correlations with mean annual air temperature, and amplitude of seasonal air temperature cycle), and ability to accurately model the coupling between soil and air temperatures at high latitudes. Many of the between-model differences can be traced to differences in the coupling between either near-surface air and shallow soil temperatures or shallow and deeper (1 m) soil temperatures, which in turn reflect differences in snow physics and soil hydrology. The models are compared with observational datasets to benchmark several aspects of the permafrost-relevant physics of the models. The CMIP5 models following multiple representative concentration pathways (RCP) show a wide range of predictions for permafrost loss: 2%–66% for RCP2.6, 15%–87% for RCP4.5, and 30%–99% for RCP8.5. Normalizing the amount of permafrost loss by the amount of high-latitude warming in the RCP4.5 scenario, the models predict an absolute loss of 1.6 ± 0.7 million km2 permafrost per 1°C high-latitude warming, or a fractional loss of 6%–29% °C−1.

Corresponding author address: Charles D. Koven, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., MS 50-4037, Berkeley, CA 94720. E-mail: cdkoven@lbl.gov

This article is included in the (C4MIP) Climate–Carbon Interactions in the CMIP5 Earth System Models special collection.

This article is included in the North American Climate in CMIP5 Experiments special collection.

Abstract

The authors analyze global climate model predictions of soil temperature [from the Coupled Model Intercomparison Project phase 5 (CMIP5) database] to assess the models’ representation of current-climate soil thermal dynamics and their predictions of permafrost thaw during the twenty-first century. The authors compare the models’ predictions with observations of active layer thickness, air temperature, and soil temperature and with theoretically expected relationships between active layer thickness and air temperature annual mean- and seasonal-cycle amplitude. Models show a wide range of current permafrost areas, active layer statistics (cumulative distributions, correlations with mean annual air temperature, and amplitude of seasonal air temperature cycle), and ability to accurately model the coupling between soil and air temperatures at high latitudes. Many of the between-model differences can be traced to differences in the coupling between either near-surface air and shallow soil temperatures or shallow and deeper (1 m) soil temperatures, which in turn reflect differences in snow physics and soil hydrology. The models are compared with observational datasets to benchmark several aspects of the permafrost-relevant physics of the models. The CMIP5 models following multiple representative concentration pathways (RCP) show a wide range of predictions for permafrost loss: 2%–66% for RCP2.6, 15%–87% for RCP4.5, and 30%–99% for RCP8.5. Normalizing the amount of permafrost loss by the amount of high-latitude warming in the RCP4.5 scenario, the models predict an absolute loss of 1.6 ± 0.7 million km2 permafrost per 1°C high-latitude warming, or a fractional loss of 6%–29% °C−1.

Corresponding author address: Charles D. Koven, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., MS 50-4037, Berkeley, CA 94720. E-mail: cdkoven@lbl.gov

This article is included in the (C4MIP) Climate–Carbon Interactions in the CMIP5 Earth System Models special collection.

This article is included in the North American Climate in CMIP5 Experiments special collection.

Save