• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505.

  • Ding, Q., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical–extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 18781896.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, and T. Li, 2002: Impacts of air–sea coupling on the simulation of the mean Asian summer monsoon in the ECHAM4 model. Mon. Wea. Rev., 130, 28892904.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Hoskins, B., and B. Wang, 2006: Large-scale atmospheric dynamics. The Asian Monsoon, B. Wang., Ed., Springer/Praxis, 357–415.

  • Hsu, P., T. Li, and B. Wang, 2011: Trends in global monsoon area and precipitation over the past 30 years. Geophys. Res. Lett., 38, L08701, doi:10.1029/2011GL046893.

    • Search Google Scholar
    • Export Citation
  • Hsu, P., T. Li, J.-J. Luo, H. Murakami, A. Kitoh, and M. Zhao, 2012: Increase of global monsoon area and precipitation under global warming: A robust signal? Geophys. Res. Lett., 39, L06701, doi:10.1029/2012GL051037.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., 1997: Interdecadal variability of summer climate over East Asia and its association with 500-hPa height and global sea surface temperature. J. Geophys. Res., 102 (D16), 19 40319 412.

    • Search Google Scholar
    • Export Citation
  • Kajikawa, Y., and B. Wang, 2012: Interdecadal change of the South China Sea summer monsoon onset. J. Climate, 25, 32073218.

  • Kajikawa, Y., T. Yasunari, S. Yoshida, and H. Fujinami, 2012: Advanced Asian summer monsoon onset in recent decades. Geophys. Res. Lett., 39, L03803, doi:10.1029/2011GL050540.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kim, K.-M., and K.-M. Lau, 2001: Dynamics of monsoon-induced biennial variability in ENSO. Geophys. Res. Lett., 28, 315318.

  • Kirtman, B. P., and J. Shukla, 2000: Influence of the Indian summer monsoon on ENSO. Quart. J. Roy. Meteor. Soc., 126, 213239.

  • Kucharski, F., A. Bracco, R. Barimalala, and J. H. Yoo, 2011: Contribution of the east–west thermal heating contrast to the South Asian monsoon and consequences for its variability. Climate Dyn., 37, 721735, doi:10.1007/s00382-010-0858-3.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., B. Rajagopalan, M. Hoerling, G. Bates, and M. Cane, 2006: Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314, 115119.

    • Search Google Scholar
    • Export Citation
  • Kwon, M., J.-G. Jhun, and K.-J. Ha, 2007: Decadal change in East Asian summer monsoon circulation in the mid-1990s. Geophys. Res. Lett., 34, L21706, doi:10.1029/2007GL031977.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and S. Yang, 1997: Climatology and interannual variability of the Southeast Asian summer monsoon. Adv. Atmos. Sci., 14, 141162.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., and B. Wang, 2013: Future change of global monsoon in the CMIP5. Climate Dyn., doi:10.1007/s00382-012-1564-0, in press.

  • Lee, J.-Y., and Coauthors, 2010: How are seasonal prediction skills related to models’ performance on mean state and annual cycle? Climate Dyn., 35, 267283.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., B. Wang, Q. Ding, K.-J. Ha, J.-B. Ahh, A. Kumar, B. Stern, and O. Alves, 2011: How predictable is the Northern Hemisphere summer upper-tropospheric circulation? Climate Dyn., 37, 11891203.

    • Search Google Scholar
    • Export Citation
  • Lepage, Y., 1971: A combination of Wilcoxon’s and Ansari–Bradley’s statistics. Biometrika, 58, 213217.

  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436.

    • Search Google Scholar
    • Export Citation
  • Murakami, T., and J. Matsumoto, 1994: Summer monsoon over the Asian continent and western North Pacific. J. Meteor. Soc. Japan, 72, 719745.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1972: Monsoon Meteorology. Academic Press, 296 pp.

  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max Planck Institute for Meteorology Rep. 218, 90 pp.

  • Smith, R. D., J. K. Dukowicz, and R. C. Malone, 1992: Parallel ocean general circulation modeling. Physica, 60, 3861.

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Tanaka, M., 1992: Intraseasonal oscillation and the onset and retreat dates of the summer monsoon over the east, southeast and western North Pacific region using GMS high cloud amount data. J. Meteor. Soc. Japan, 70, 613629.

    • Search Google Scholar
    • Export Citation
  • Tao, S., and L. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • Tokinaga, H., and S.-P. Xie, 2011: Wave- and Anemometer-Based Sea Surface Wind (WASWind) for climate change analysis. J. Climate, 24, 267285.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Valcke, S., A. Caubel, D. Declat, and L. Terry, 2003: OASIS3: Ocean–Atmosphere–Sea Ice–Soil user’s guide. CERFACS Tech. Rep. TR/CMGC/03/69, 57 pp.

  • Wang, B., and T. Li, 1993: A simple tropical atmospheric model of relevance to short-term climate variations. J. Atmos. Sci., 50, 260284.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53, 449467.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398.

  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asia teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536.

    • Search Google Scholar
    • Export Citation
  • Wang, B., I.-S. Kang, and J.-Y. Lee, 2004: Ensemble simulations of Asian–Australian monsoon variability by 11 AGCMs. J. Climate, 17, 803818.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: Assessment of APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93117.

    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, H.-J. Kim, P. J. Webster, and S.-Y. Yim, 2012a: Recent change of global monsoon precipitation (1979-2008). Climate Dyn., 39, 11231135 , doi:10.1007/s00382-011-1266-z.

    • Search Google Scholar
    • Export Citation
  • Wang, B., S. Xu, and L. Wu, 2012b: Intensified Arabian Sea tropical storms. Nature, 489, E1E2, doi:10.1038/nature11470.

  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive system. Quart. J. Roy. Meteor. Soc., 118, 877926.

  • Woodward, W. A., and H. L. Gray, 1993: Global warming and the problem of testing for trend in time series data. J. Climate, 6, 953962.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2001: Multi-stage onset of the summer monsoon over the western North Pacific. Climate Dyn., 17, 277289.

  • Xiang, B., W. Yu, T. Li, and B. Wang, 2011: The critical role of the boreal summer mean state in the development of the IOD. Geophys. Res. Lett., 38, L02710, doi:10.1029/2010GL045851.

    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, Q. Ding, F.-F. Jin, X. Fu, and H.-J. Kim, 2012: Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation. Climate Dyn., 39, 14131430, doi:10.1007/s00382-011-1164-4.

    • Search Google Scholar
    • Export Citation
  • Xiang, B., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., doi:10.1007/s00382-012-1427-8, in press.

    • Search Google Scholar
    • Export Citation
  • Xie, X., and B. Wang, 1996: Low-frequency equatorial waves in vertically sheared zonal flows. Part II: Unstable waves. J. Atmos. Sci., 53, 35893605.

    • Search Google Scholar
    • Export Citation
  • Yonetani, T., 1992: Discontinuous changes of precipitation in Japan after 1900 detected by the Lepage test. J. Meteor. Soc. Japan, 70, 95104.

    • Search Google Scholar
    • Export Citation
  • Yu, W., K. Li, J. Shi, L. Liu, H. Wang, and Y. Liu, 2012a: The onset of the monsoon over the Bay of Bengal: The year-to-year variations. Atmos. Oceanic Sci. Lett., 5, 342347.

    • Search Google Scholar
    • Export Citation
  • Yu, W., J. Shi, L. Liu, K. Li, Y. Liu, and H. Wang, 2012b: The onset of the monsoon over the Bay of Bengal: The observed common features for 2008–2011. Atmos. Oceanic Sci. Lett., 5, 314318.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., P. Liang, A. Moise, and L. Hanson, 2012: Diagnosing potential changes in Asian summer monsoon onset and duration in IPCC AR4 model simulations using moisture and wind indices. Climate Dyn., 39, 24652486, doi:10.1007/s00382-012-1289-0.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., L. Zhang, and H. Li, 2008: Changes in global land monsoon area and total rainfall accumulation over the last half century. Geophys. Res. Lett., 35, L16707, doi:10.1029/2008GL034881.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 19
PDF Downloads 10 10 10

Mechanisms for the Advanced Asian Summer Monsoon Onset since the Mid-to-Late 1990s

View More View Less
  • 1 International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii
  • | 2 International Pacific Research Center, and Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii
Restricted access

Abstract

Understanding the variability and change of monsoon onset is of utmost importance for agriculture planning and water management. In the last three decades, the Asian summer monsoon onset (ASMO) has remarkably advanced, but the physical mechanisms underlying the change remain elusive. Since the overall ASMO occurs in May, this paper focuses on the change of mean fields in May and considers enhanced mean precipitation and monsoon westerly winds as signs of advanced ASMO. The results reveal that the advanced ASMO mainly represents a robust decadal shift in the mid-to-late 1990s, which is attributed to the mean state change in the Pacific basin characterized by a grand La Niña–like pattern. The La Niña–like mean state change controls the ASMO through the westward propagation of Rossby waves and its interaction with the asymmetric background mean states in the Indian Ocean and western Pacific, which intensifies the Northern Hemispheric perturbations and westerly winds. Intriguingly, the abrupt decadal shifts of monsoon onset in the Arabian Sea and Bay of Bengal occur in 1999, in contrast to the South China Sea with a decadal shift in 1994. Numerical experiments with a coupled climate model demonstrate that the advanced monsoon onset in the Arabian Sea and Bay of Bengal is governed by the enhanced zonal sea surface temperature (SST) gradients in the equatorial Pacific, while that in the South China Sea is primarily determined by the abrupt SST warming near the Philippine Sea.

School of Ocean and Earth Science and Technology Contribution Number 8756 and International Pacific Research Center Contribution Number 915.

Corresponding author address: Baoqiang Xiang, Post 401, 1680 East-West Rd., Honolulu, HI 96822. E-mail: baoqiang@hawaii.edu

Abstract

Understanding the variability and change of monsoon onset is of utmost importance for agriculture planning and water management. In the last three decades, the Asian summer monsoon onset (ASMO) has remarkably advanced, but the physical mechanisms underlying the change remain elusive. Since the overall ASMO occurs in May, this paper focuses on the change of mean fields in May and considers enhanced mean precipitation and monsoon westerly winds as signs of advanced ASMO. The results reveal that the advanced ASMO mainly represents a robust decadal shift in the mid-to-late 1990s, which is attributed to the mean state change in the Pacific basin characterized by a grand La Niña–like pattern. The La Niña–like mean state change controls the ASMO through the westward propagation of Rossby waves and its interaction with the asymmetric background mean states in the Indian Ocean and western Pacific, which intensifies the Northern Hemispheric perturbations and westerly winds. Intriguingly, the abrupt decadal shifts of monsoon onset in the Arabian Sea and Bay of Bengal occur in 1999, in contrast to the South China Sea with a decadal shift in 1994. Numerical experiments with a coupled climate model demonstrate that the advanced monsoon onset in the Arabian Sea and Bay of Bengal is governed by the enhanced zonal sea surface temperature (SST) gradients in the equatorial Pacific, while that in the South China Sea is primarily determined by the abrupt SST warming near the Philippine Sea.

School of Ocean and Earth Science and Technology Contribution Number 8756 and International Pacific Research Center Contribution Number 915.

Corresponding author address: Baoqiang Xiang, Post 401, 1680 East-West Rd., Honolulu, HI 96822. E-mail: baoqiang@hawaii.edu
Save