• Aagaard, K., , and E. C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94, 14 48514 498.

    • Search Google Scholar
    • Export Citation
  • Alekseev, V. A., , I. Esau, , I. V. Polyakov, , S. J. Byam, , and S. Sorokina, 2012: Vertical structure of recent arctic warming from observed data and reanalysis products. Climate Change,111, 215–239, doi:10.1007/s10584-011-0192-8.

  • Alexander, M. A., , and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25, 122137.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., , U. S. Bhatt, , J. E. Walsh, , M. S. Timlin, , J. S. Miller, , and J. D. Scott, 2004: The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Climate, 17, 890905.

    • Search Google Scholar
    • Export Citation
  • Årthun, M., , R. B. Ingvaldsen, , L. H. Smedsrud, , and C. Schrum, 2011: Dense water formation and circulation in the Barents Sea. Deep-Sea Res. I, 58, 801817.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , V. A. Semenov, , and O. M. Johannessen, 2004: The early twentieth-century warming in the Arctic—A possible mechanism. J. Climate, 17, 40454057.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., , C. Deser, , and M. A. Alexander, 2007: Investigating the impact of reemerging sea surface temperature anomalies on the winter atmospheric circulation over the North Atlantic. J. Climate, 20, 35103526.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , J. E. Walsh, , and M. S. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate, 13, 617633.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , M. A. Alexander, , and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 5772.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , G. Magnusdottir, , R. Saravanan, , and A. Phillips, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J. Climate, 17, 877889.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., , and E. Hunter, 2007: Drivers of declining sea ice in the Arctic winter: A tale of two seas. Geophys. Res. Lett., 34, L17503, doi:10.1029/2007GL030995.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., , W. Chan, , D. J. Leathers, , J. R. Miller, , and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36, L07503, doi:10.1029/2009GL037274.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air–sea feedback in the middle latitudes. Rev. Geophys., 23, 357390.

    • Search Google Scholar
    • Export Citation
  • Gammelsrød, T., , Ø. Leikvina, , V. Lienand, , W. P. Budgell, , H. Loeng, , and W. Maslowski, 2009: Mass and heat transports in the NE Barents Sea: Observations and models. J. Mar. Syst., 75, 5669.

    • Search Google Scholar
    • Export Citation
  • Germe, A., , M.-N. Houssais, , C. Herbaut, , and C. Cassou, 2011: Greenland Sea sea ice variability over 1979–2007 and its link to the surface atmosphere. J. Geophys. Res.,116, C10034, doi:10.1029/2011JC006960.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperature and precipitation. Science, 269, 676679.

    • Search Google Scholar
    • Export Citation
  • Ikeda, M., 1990: Decadal oscillations of the air–ice–ocean system in the Northern Hemisphere. Atmos.–Ocean, 28, 106139.

  • Ingvaldsen, R., , L. Asplin, , and H. Loeng, 2004: The seasonal cycle in the Atlantic transport to the Barents Sea during the years 1997–2001. Cont. Shelf Res., 24, 10151032.

    • Search Google Scholar
    • Export Citation
  • Ivanov, V. V., , and G. I. Shapiro, 2005: Formation of a dense water cascade in the marginal ice zone in the Barents Sea. Deep-Sea Res. I, 52, 16991717.

    • Search Google Scholar
    • Export Citation
  • Johannessen, O. M., , K. Lygre, , and T. Eldevik, 2005: Convective chimneys and plumes in the northern Greenland Sea. The Nordic Seas: An Integrated Perspective, Geophys. Monogr., Vol. 158, Amer. Geophys. Union, 251–272.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Koenigk, T., , U. Mikolajewicz, , J. H. Jungclaus, , and A. Kroll, 2009: Sea ice in the Barents Sea: Seasonal to interannual variability and climate feedbacks in a global coupled model. Climate Dyn., 32, 11191138.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., 2008: A QuikSCAT climatology of ocean surface winds in the Nordic seas: Identification of features and comparison with the NCEP/NCAR reanalysis. J. Geophys. Res., 113, D11106, doi:10.1029/2007JD008918.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., , W. A. Robinson, , P. Chang, , and A. W. Robertson, 2006: The physical basis for predicting Atlantic sector seasonal-to-interannual climate variability. J. Climate, 19, 59495970.

    • Search Google Scholar
    • Export Citation
  • Kvingedal, B., 2005: Sea-ice extent and variability in the Nordic Seas, 1967–2002. The Nordic Seas: An Integrated Perspective, Geophys. Monogr., Vol. 158, Amer. Geophys. Union, 39–49.

  • Livezey, R. E., , and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659.

    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., , C. Deser, , and R. Saravanan, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Climate, 17, 857876.

    • Search Google Scholar
    • Export Citation
  • Midttun, L., 1985: Formation of dense bottom water in the Barents Sea. Deep-Sea Res., 32, 12331241.

  • Mysak, L. A., , and S. A. Venegas, 1998: Decadal climate oscillations in the Arctic: A new feedback loop for atmosphere–ice–ocean interactions. Geophys. Res. Lett., 25, 36073610.

    • Search Google Scholar
    • Export Citation
  • Namias, J., , and B. M. Born, 1970: Temporal coherence in North Pacific sea-surface temperature patterns. J. Geophys. Res., 75, 59525955.

    • Search Google Scholar
    • Export Citation
  • Namias, J., , and B. M. Born, 1974: Further studies of temporal coherence in North Pacific sea surface temperatures. J. Geophys. Res., 79, 797798.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., , and P. S. Guest, 1991: The Arctic snow and air temperature budget over sea ice during winter. J. Geophys. Res., 96 (C3), 46514662.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., , and M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A, 19.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., , M. Wang, , and S. Salo, 2008: The recent Arctic warm period. Tellus, 60A, 589597.

  • Reynolds, R. W., , T. M. Smith, , C. Liu, , D. B. Chelton, , K. S. Casey, , and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496.

    • Search Google Scholar
    • Export Citation
  • Schlichtholz, P., 2011: Influence of oceanic heat variability on sea ice anomalies in the Nordic Seas. Geophys. Res. Lett., 38, L05705, doi:10.1029/2010GL045894.

    • Search Google Scholar
    • Export Citation
  • Schlichtholz, P., , and M.-N. Houssais, 2011: Forcing of oceanic heat anomalies by air–sea interactions in the Nordic Seas area. J. Geophys. Res., 116, C01006, doi:10.1029/2009JC005944.

    • Search Google Scholar
    • Export Citation
  • Simonsen, K., , and P. M. Haugan, 1996: Heat budgets of the Arctic Mediterranean and sea surface heat flux parameterizations for the Nordic Seas. J. Geophys. Res., 101, 65536576.

    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., , and B. Kvingedal, 2006: Atmospheric forcing on the Barents Sea winter ice extent. J. Climate, 19, 47724784.

  • Strong, C., , and G. Magnusdottir, 2010: Modeled winter sea ice variability and the North Atlantic Oscillation: A multi-century perspective. Climate Dyn., 34, 515525.

    • Search Google Scholar
    • Export Citation
  • Ukita, J., , M. Honda, , H. Nakamura, , Y. Tachibana, , D. J. Cavlieri, , C. L. Parkinson, , H. Koide, , and K. Yamamoto, 2007: Northern Hemisphere sea ice variability: Lag structure and its implications. Tellus, 59A, 261272.

    • Search Google Scholar
    • Export Citation
  • Vinje, T., 2001: Anomalies and trends of sea-ice extent and atmospheric circulation in the Nordic Seas during the period 1864–1998. J. Climate, 14, 255267.

    • Search Google Scholar
    • Export Citation
  • Wu, B., , J. Wang, , and J. Walsh, 2004: Possible feedback of winter sea ice in the Greenland and Barents Seas on the local atmosphere. Mon. Wea. Rev., 132, 18681876.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , M. Steele, , D. A. Rothrock, , and R. W. Lindsay, 2004: Increasing exchanges at Greenland–Scotland Ridge and their links with the North Atlantic Oscillation and Arctic Sea Ice. Geophys. Res. Lett., 31, L09307, doi:10.1029/2003GL019304.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , A. Sorteberg, , J. Zhang, , R. Gerdes, , and J. C. Comiso, 2008: Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett., 35, L22701, doi:10.1029/2008GL035607.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 29 29 5
PDF Downloads 17 17 3

Observational Evidence for Oceanic Forcing of Atmospheric Variability in the Nordic Seas Area

View More View Less
  • 1 Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
© Get Permissions
Restricted access

Abstract

Substantial predictability of the wintertime atmospheric variability in the Nordic (Greenland–Iceland–Norwegian and Barents) seas region is reported based on oceanic observations and atmospheric reanalysis data. In particular, about 60% of the variance of the winter (December–March) regional average surface air temperature (SAT) and early-winter (November–February) zonal geostrophic winds over the western Barents Sea Opening (BSO) area in the period 1982–2006 is explained by the previous summer (June–September) Atlantic water temperature (AWT) anomalies in this area. The atmospheric response to oceanic heat anomalies mainly occurs in the marginal ice zone (MIZ), where the sea ice and corresponding surface heat flux (SHF) anomalies should be triggered by entrainment of subsurface heat anomalies into the deepening mixed layer and sustained through winter by anomalous oceanic heat transport. The latter should be caused by geostrophic current anomalies forced by anomalous ocean Ekman suction and/or onshore Ekman transport appearing as a feedback from the oceanically driven anomalous atmospheric circulation. The wintertime atmospheric links to the previous summer’s AWT anomalies in the BSO area reflect to a large extent a climate feedback from reemerging, atmospherically driven sea surface temperature (SST) anomalies. Indeed, about 70% of the variance of the winter average SAT over the Nordic seas and winter average surface wind vorticity in the MIZ area in the 1982–2006 (or extended 1982–2011) period is explained by the previous early-spring (February–May) SST anomalies in the open water area and the previous late-winter (January–April) SHF anomalies at the Barents Sea ice edge, respectively.

Corresponding author address: Pawel Schlichtholz, Institute of Oceanology, Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland. E-mail: schlicht@iopan.gda.pl

Abstract

Substantial predictability of the wintertime atmospheric variability in the Nordic (Greenland–Iceland–Norwegian and Barents) seas region is reported based on oceanic observations and atmospheric reanalysis data. In particular, about 60% of the variance of the winter (December–March) regional average surface air temperature (SAT) and early-winter (November–February) zonal geostrophic winds over the western Barents Sea Opening (BSO) area in the period 1982–2006 is explained by the previous summer (June–September) Atlantic water temperature (AWT) anomalies in this area. The atmospheric response to oceanic heat anomalies mainly occurs in the marginal ice zone (MIZ), where the sea ice and corresponding surface heat flux (SHF) anomalies should be triggered by entrainment of subsurface heat anomalies into the deepening mixed layer and sustained through winter by anomalous oceanic heat transport. The latter should be caused by geostrophic current anomalies forced by anomalous ocean Ekman suction and/or onshore Ekman transport appearing as a feedback from the oceanically driven anomalous atmospheric circulation. The wintertime atmospheric links to the previous summer’s AWT anomalies in the BSO area reflect to a large extent a climate feedback from reemerging, atmospherically driven sea surface temperature (SST) anomalies. Indeed, about 70% of the variance of the winter average SAT over the Nordic seas and winter average surface wind vorticity in the MIZ area in the 1982–2006 (or extended 1982–2011) period is explained by the previous early-spring (February–May) SST anomalies in the open water area and the previous late-winter (January–April) SHF anomalies at the Barents Sea ice edge, respectively.

Corresponding author address: Pawel Schlichtholz, Institute of Oceanology, Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland. E-mail: schlicht@iopan.gda.pl
Save