• Beck, H. E., , T. R. McVicar, , A. I. J. M. van Dijk, , J. Schellekens, , R. A. M. de Jeu, , and L. A. Bruijnzeel, 2011: Global evaluation of four AVHRR-NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sens. Environ., 115, 25472563, doi:10.1016/j.rse.2011.05.012.

    • Search Google Scholar
    • Export Citation
  • Brohan, P., , J. J. Kennedy, , I. Harris, , S. F. B. Tett, , and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Cao, L., , and Z. Yang, 2012: Progress in research on homogenization of climate data. Adv. Climate Change Res., 3, 5967.

  • Chen, S., , Y. Liu, , and A. Thomas, 2006: Climatic change on the Tibetan Plateau: Potential evapotranspiration trends from 1961–2000. Climatic Change, 76, 291319, doi:10.1007/s10584-006-9080-z.

    • Search Google Scholar
    • Export Citation
  • Dai, A. G., , J. H. Wang, , P. W. Thorne, , D. E. Parker, , L. Haimberger, , and X. L. L. Wang, 2011: A new approach to homogenize daily radiosonde humidity data. J. Climate, 24, 965991.

    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., 1998: Identification and implications of biases in US surface wind observation, archival, and summarization methods. Theor. Appl. Climatol., 60, 151162, doi:10.1007/s007040050040.

    • Search Google Scholar
    • Export Citation
  • Duan, A. M., , and G. X. Wu, 2008: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations. J. Climate, 21, 31493164.

    • Search Google Scholar
    • Export Citation
  • Duan, A. M., , and G. X. Wu, 2009: Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part II: Connection with climate warming. J. Climate, 22, 41974212.

    • Search Google Scholar
    • Export Citation
  • Duan, C. F., 2009: Study on the changes and causes of surface wind speed in China (in Chinese). Nanjing University of Information Science and Technology Rep., 94 pp.

  • Durre, I., , R. S. Vose, , and D. B. Wuertz, 2006: Overview of the Integrated Global Radiosonde Archive. J. Climate, 19, 5368.

  • Gong, D.-Y., , and C.-H. Ho, 2003: Arctic Oscillation signals in the East Asian summer monsoon. J. Geophys. Res., 108, D24066, doi:10.1029/2002JD002193.

    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., , S. W. Wang, , and J. H. Zhu, 2001: East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 20732076.

  • Guo, H., , M. Xu, , and Q. Hu, 2011: Changes in near-surface wind speed in China: 1969–2005. Int. J. Climatol., 31, 349358, doi:10.1002/joc.2091.

    • Search Google Scholar
    • Export Citation
  • Huber, P. J., 1981: Robust Statistics. Wiley, 308 pp.

  • Jacobson, M. Z., , and Y. J. Kaufman, 2006: Wind reduction by aerosol particles. Geophys. Res. Lett., 33, L24814, doi:10.1029/2006GL027838.

    • Search Google Scholar
    • Export Citation
  • Jiang, Y., , Y. Luo, , Z. Zhao, , and S. Tao, 2010: Changes in wind speed over China during 1956–2004. Theor. Appl. Climatol., 99, 421430, doi:10.1007/s00704-009-0152-7.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., , M. New, , D. E. Parker, , S. Martin, , and I. G. Rigor, 1999: Surface air temperature and its changes over the past 150 years. Rev. Geophys., 37, 173199.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Klink, K., 1999: Trends in mean monthly maximum and minimum surface wind speeds in the coterminous United States, 1961 to 1990. Climate Res., 13, 193205.

    • Search Google Scholar
    • Export Citation
  • Li, Z., , Z. Yan, , K. Tu, , W. Liu, , and Y. Wang, 2011: Changes in wind speed and extremes in Beijing during 1960–2008 based on homogenized observations. Adv. Atmos. Sci., 28, 408420, doi:10.1007/s00376-010-0018-z.

    • Search Google Scholar
    • Export Citation
  • Liu, X. D., , and B. D. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 17291742.

  • Luo, H., , and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966989.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., and Coauthors, 2005: Diurnal and inter-monthly variation of land surface heat fluxes over the central Tibetan Plateau area. Theor. Appl. Climatol., 80, 259273, doi:10.1007/s00704-004-0104-1.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., , S. R. Hare, , Y. Zhang, , J. M. Wallace, , and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., , T. G. Van Niel, , L. T. Li, , M. L. Roderick, , D. P. Rayner, , L. Ricciardulli, , and R. J. Donohue, 2008: Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys. Res. Lett., 35, L20403, doi:10.1029/2008GL035627.

    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., , T. G. Van Niel, , M. L. Roderick, , L. T. Li, , X. G. Mo, , N. E. Zimmermann, , and D. R. Schmatz, 2010: Observational evidence from two mountainous regions that near-surface wind speeds are declining more rapidly at higher elevations than lower elevations: 1960–2006. Geophys. Res. Lett., 37, L06402, doi:10.1029/2009GL042255.

    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., and Coauthors, 2012: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol., 416, 182205.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., , Y. Tachibana, , and K. Yamazaki, 2003: Impact of the wintertime North Atlantic Oscillation (NAO) on the summertime atmospheric circulation. Geophys. Res. Lett., 30, 1704, doi:10.1029/2003GL017280.

    • Search Google Scholar
    • Export Citation
  • Qin, J., , K. Yang, , S. Liang, , and X. Guo, 2009: The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97, 321327, doi:10.1007/s10584-009-9733-9.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., , L. D. Rotstayn, , G. D. Farquhar, , and M. T. Hobbins, 2007: On the attribution of changing pan evaporation. Geophys. Res. Lett., 34, L17403, doi:10.1029/2007GL031166.

    • Search Google Scholar
    • Export Citation
  • Street, J. O., , R. J. Carroll, , and D. Ruppert, 1988: A note on computing robust regression estimates via iteratively reweighted least-squares. Amer. Stat., 42, 152154.

    • Search Google Scholar
    • Export Citation
  • Thomas, B. R., , and V. R. Swail, 2011: Buoy wind inhomogeneities related to averaging method and anemometer type: Application to long time series. Int. J. Climatol., 31, 10401055, doi:10.1002/joc.2339.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., , J. Cattiaux, , P. Yiou, , J. N. Thepaut, , and P. Ciais, 2010: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci., 3, 756761, doi:10.1038/ngeo979.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.

    • Search Google Scholar
    • Export Citation
  • Wang, L., , W. Chen, , and R. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the east Asian winter monsoon. Geophys. Res. Lett., 35, L20702, doi:10.1029/2008GL035287.

    • Search Google Scholar
    • Export Citation
  • Xu, M., , C.-P. Chang, , C. Fu, , Y. Qi, , A. Robock, , D. Robinson, , and H.-M. Zhang, 2006: Steady decline of east Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed. J. Geophys. Res., 111, D24111, doi:10.1029/2006JD007337.

    • Search Google Scholar
    • Export Citation
  • Yang, K., , T. Koike, , H. Fujii, , T. Tamura, , X. D. Xu, , L. G. Bian, , and M. Y. Zhou, 2004: The daytime evolution of the atmospheric boundary layer and convection over the Tibetan Plateau: Observations and simulations. J. Meteor. Soc. Japan, 82, 17771792.

    • Search Google Scholar
    • Export Citation
  • Yang, K., , X. Guo, , and B. Wu, 2011a: Recent trends in surface sensible heat flux on the Tibetan Plateau. Sci. China Earth Sci., 54, 1928, doi:10.1007/s11430-010-4036-6.

    • Search Google Scholar
    • Export Citation
  • Yang, K., , B. Ye, , D. Zhou, , B Wu, , T. Foken, , J. Qin, , and Z. Zhou, 2011b: Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic Change, 109, 517534, doi:10.1007/s10584-011-0099-4.

    • Search Google Scholar
    • Export Citation
  • Yeh, T., , and Y. Gao, 1979: Meteorology of the Qinghai-Xizang (Tibet) Plateau (in Chinese). Science Press, 278 pp.

  • Yoon, J., , and S. W. Yeh, 2010: Influence of the Pacific decadal oscillation on the relationship between El Niño and the northeast Asian summer monsoon. J. Climate, 23, 45254537.

    • Search Google Scholar
    • Export Citation
  • You, Q., , S. Kang, , W.-A. Flugel, , N. Pepin, , Y. Yan, , and J. Huang, 2010: Decreasing wind speed and weakening latitudinal surface pressure gradients in the Tibetan Plateau. Climate Res., 42, 5764, doi:10.3354/cr00864.

    • Search Google Scholar
    • Export Citation
  • Zhang, A., , G. Ren, , and J. Guo, 2009a: Change trend analyses on upper-air wind speed over China in past 30 years (in Chinese). Plateau Meteor., 28, 680687.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , Y. Ren, , Z.-Y. Yin, , Z. Lin, , and D. Zheng, 2009b: Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971–2004. J. Geophys. Res., 114, D15105, doi:10.1029/2009JD011753.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 101 101 15
PDF Downloads 104 104 23

Observed Coherent Trends of Surface and Upper-Air Wind Speed over China since 1960

View More View Less
  • 1 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, and University of the Chinese Academy of Sciences, Beijing, China
  • | 2 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
  • | 3 Department of Geological Sciences, The University of Texas at Austin, Austin, Texas, and Center of Earth System Science, Tsinghua University, Beijing, China
© Get Permissions
Restricted access

Abstract

Previous studies indicated that surface wind speed over China declined during past decades, and several explanations exist in the literature. This study presents long-term (1960–2009) changes of both surface and upper-air wind speeds over China and addresses observed evidence to interpret these changes. It is found that surface wind over China underwent a three-phase change over the past 50 yr: (i) it step changed to a strong wind level at the end of the 1960s, (ii) it declined until the beginning of the 2000s, and (iii) it seemed to be steady and even recovering during the very recent years. The variability of surface wind speed is greater at higher elevations and less at lower elevations. In particular, surface wind speed over the elevated Tibetan Plateau has changed more significantly. Changes in upper-air wind speed observed from rawinsonde are similar to surface wind changes. The NCEP–NCAR reanalysis indicates that wind speed changes correspond to changes in geopotential height gradient at 500 hPa. The latter are further correlated with the changes of latitudinal surface temperature gradient, with a correlation coefficient of 0.88 for the past 50 yr over China. This strongly suggests that the spatial gradient of surface global warming or cooling may significantly change surface wind speed at a regional scale through atmospheric thermal adaption. The recovery of wind speed since the beginning of the 2000s over the Tibetan Plateau might be a precursor of the reversal of wind speed trends over China, as wind over high elevations can respond more rapidly to the warming gradient and atmospheric circulation adjustment.

Corresponding author address: Kun Yang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Bldg. 3, Courtyard 16, Chaoyang District, Beijing 100101, China. E-mail: yangk@itpcas.ac.cn

Abstract

Previous studies indicated that surface wind speed over China declined during past decades, and several explanations exist in the literature. This study presents long-term (1960–2009) changes of both surface and upper-air wind speeds over China and addresses observed evidence to interpret these changes. It is found that surface wind over China underwent a three-phase change over the past 50 yr: (i) it step changed to a strong wind level at the end of the 1960s, (ii) it declined until the beginning of the 2000s, and (iii) it seemed to be steady and even recovering during the very recent years. The variability of surface wind speed is greater at higher elevations and less at lower elevations. In particular, surface wind speed over the elevated Tibetan Plateau has changed more significantly. Changes in upper-air wind speed observed from rawinsonde are similar to surface wind changes. The NCEP–NCAR reanalysis indicates that wind speed changes correspond to changes in geopotential height gradient at 500 hPa. The latter are further correlated with the changes of latitudinal surface temperature gradient, with a correlation coefficient of 0.88 for the past 50 yr over China. This strongly suggests that the spatial gradient of surface global warming or cooling may significantly change surface wind speed at a regional scale through atmospheric thermal adaption. The recovery of wind speed since the beginning of the 2000s over the Tibetan Plateau might be a precursor of the reversal of wind speed trends over China, as wind over high elevations can respond more rapidly to the warming gradient and atmospheric circulation adjustment.

Corresponding author address: Kun Yang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Bldg. 3, Courtyard 16, Chaoyang District, Beijing 100101, China. E-mail: yangk@itpcas.ac.cn
Save