Interannual Climate Variability over the Tropical Pacific Ocean Induced by the Indian Ocean Dipole through the Indonesian Throughflow

Dongliang Yuan Key Laboratory of Ocean Circulation and Waves, and Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Dongliang Yuan in
Current site
Google Scholar
PubMed
Close
,
Hui Zhou Key Laboratory of Ocean Circulation and Waves, and Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Hui Zhou in
Current site
Google Scholar
PubMed
Close
, and
Xia Zhao Key Laboratory of Ocean Circulation and Waves, and Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Xia Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors’ previous dynamical study has suggested a link between the Indian and Pacific Ocean interannual climate variations through the transport variations of the Indonesian Throughflow. In this study, the consistency of this oceanic channel link with observations is investigated using correlation analyses of observed ocean temperature, sea surface height, and surface wind data. The analyses show significant lag correlations between the sea surface temperature anomalies (SSTA) in the southeastern tropical Indian Ocean in fall and those in the eastern Pacific cold tongue in the following summer through fall seasons, suggesting potential predictability of ENSO events beyond the period of 1 yr. The dynamics of this teleconnection seem not through the atmospheric bridge, because the wind anomalies in the far western equatorial Pacific in fall have insignificant correlations with the cold tongue anomalies at time lags beyond one season. Correlation analyses between the sea surface height anomalies (SSHA) in the southeastern tropical Indian Ocean and those over the Indo-Pacific basin suggest eastward propagation of the upwelling anomalies from the Indian Ocean into the equatorial Pacific Ocean through the Indonesian Seas. Correlations in the subsurface temperature in the equatorial vertical section of the Pacific Ocean confirm the propagation. In spite of the limitation of the short time series of observations available, the study seems to suggest that the ocean channel connection between the two basins is important for the evolution and predictability of ENSO.

Corresponding author address: Dongliang Yuan, Institute of Oceanology, Chinese Academy of Sciences CAS Key Lab of Ocean Circulation and Waves, 7 Nanhai Road, Qingdao 266071, China. E-mail: dyuan@qdio.ac.cn

Abstract

The authors’ previous dynamical study has suggested a link between the Indian and Pacific Ocean interannual climate variations through the transport variations of the Indonesian Throughflow. In this study, the consistency of this oceanic channel link with observations is investigated using correlation analyses of observed ocean temperature, sea surface height, and surface wind data. The analyses show significant lag correlations between the sea surface temperature anomalies (SSTA) in the southeastern tropical Indian Ocean in fall and those in the eastern Pacific cold tongue in the following summer through fall seasons, suggesting potential predictability of ENSO events beyond the period of 1 yr. The dynamics of this teleconnection seem not through the atmospheric bridge, because the wind anomalies in the far western equatorial Pacific in fall have insignificant correlations with the cold tongue anomalies at time lags beyond one season. Correlation analyses between the sea surface height anomalies (SSHA) in the southeastern tropical Indian Ocean and those over the Indo-Pacific basin suggest eastward propagation of the upwelling anomalies from the Indian Ocean into the equatorial Pacific Ocean through the Indonesian Seas. Correlations in the subsurface temperature in the equatorial vertical section of the Pacific Ocean confirm the propagation. In spite of the limitation of the short time series of observations available, the study seems to suggest that the ocean channel connection between the two basins is important for the evolution and predictability of ENSO.

Corresponding author address: Dongliang Yuan, Institute of Oceanology, Chinese Academy of Sciences CAS Key Lab of Ocean Circulation and Waves, 7 Nanhai Road, Qingdao 266071, China. E-mail: dyuan@qdio.ac.cn
Save
  • Alexander, M. A., I. BladĂ©, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scot, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205–2231.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., S. P. Xie, J. P. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18, 302–319.

    • Search Google Scholar
    • Export Citation
  • Battisti, D., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere-ocean model. J. Atmos. Sci., 45, 2889–2919.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2003: Influence of the Indian Ocean dipole on the Southern Oscillation. J. Meteor. Soc. Japan, 81, 169–177.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J. J. Luo, S. Masson, S. A. Rao, H. Sakuma, and T. Yamagata, 2006: A CGCM study on the interaction between IOD and ENSO. J. Climate, 19, 1688–1705.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and X. Liu, 1994: Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24, 1224–1235.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and S. Van Gorder, 2003: Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys. Res. Lett., 30, 1399, doi:10.1029/2002GL016673.

    • Search Google Scholar
    • Export Citation
  • Cresswell, G. R., and J. R. Luick, 2001: Current measurements in the Maluku Sea. J. Geophys. Res., 106, 13 953–13 958.

  • Delcroix, T., B. Dewitte, Y. duPenhoat, F. Masia, and J. Picaut, 2000: Equatorial waves and warm pool displacements during the 1992–1998 El Niño South Oscillation events: Observation and modeling. J. Geophys. Res., 105, 26 045–26 062.

    • Search Google Scholar
    • Export Citation
  • Drushka, K., J. Sprintall, S. T. Gille, and I. Brodjonegoro, 2010: Vertical structure of Kelvin waves in the Indonesian Throughflow exit passages. J. Phys. Oceanogr., 40, 1965–1987.

    • Search Google Scholar
    • Export Citation
  • Fieux, M., R. Molcard, and A. G. Ilahude, 1996: Geostrophic transport of the Pacific-Indian oceans throughflow. J. Geophys. Res., 101, 12 421–12 432.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453–456.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., R. D. Susanto, and A. Ffield, 1999: Throughflow within Makassar Strait. Geophys. Res. Lett., 26, 3325–3328.

  • Gordon, A. L., R. D. Susanto, A. Ffield, B. A. Huber, W. Pranowo, and S. Wirasantosa, 2008: Makassar Strait throughflow, 2004 to 2006. Geophys. Res. Lett., 35, L24605, doi:10.1029/2008GL036372.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nat. Geosci., 3, 168–172.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., and B. Huang, 2004: The Rossby wave as a key mechanism of Indian Ocean climate variability. Deep-Sea Res. I, 41, 2123–2136.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

  • Kandaga, P., A. L. Gordon, J. Sprintall, and R. D. Susanto, 2009: Intraseasonal variability in the Makassar Strait thermocline. J. Mar. Res., 67, 757–777.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., T. Li, S.-I. An, I.-S. Kang, J.-J. Luo, S. Masson, and T. Yamagata, 2006: Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33, L09710, doi:10.1029/2005GL024916.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13, 4287–4309.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 3–20.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., A. Leetmaa, M. J. Nath, and H. L. Wang, 2005: Influence of ENSO-induced Indo-western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J. Climate, 18, 2922–2942.

    • Search Google Scholar
    • Export Citation
  • Luick, J. L., and G. R. Cresswell, 2001: Current measurements in the Maluku Sea. J. Geophys. Res., 106, 13 953–13 958.

  • Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96 (Suppl.), 3343–3357.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., R. Zhang, S. K. Behera, Y. Masumoto, F.-F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726–742.

    • Search Google Scholar
    • Export Citation
  • MacDonald, A. M., 1998: The global ocean circulation: A hydrographic estimate and regional analysis. Prog. Oceanogr., 41, 281–382.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and G. Meyers, 1998: Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res., 103, 27 589–27 602.

    • Search Google Scholar
    • Export Citation
  • McClean, J. L., D. P. Ivanova, and J. Sprintall, 2005: Remote origins of interannual variability in the Indonesian Throughflow region from data and a global Parallel Ocean Program simulation. J. Geophys. Res., 110, C10013, doi:10.1029/2004JC002477.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and X. Yu, 1999: Equatorial waves and the 1997–1998 El Niño. Geophys. Res. Lett., 26, 2961–2964.

  • Meyers, G., 1996: Variation of Indonesian Throughflow and the El Niño-Southern Oscillation. J. Geophys. Res., 101, 12 255–12 263.

    • Search Google Scholar
    • Export Citation
  • Molcard, R., A. G. Ilahude, M. Fieux, J. C. Swallow, and J. Banjarnahor, 1994: Low frequency variability of the currents in Indonesian channels (Savu-Roti M1 and Roti-Ashmore Reef M2). Deep-Sea Res., 41, 1643–1662.

    • Search Google Scholar
    • Export Citation
  • Molcard, R., M. Fieux, and A. G. Ilahude, 1996: The Indo-Pacific throughflow in the Timor Passage. J. Geophys. Res., 101, 12 411–12 420.

    • Search Google Scholar
    • Export Citation
  • Molcard, R., M. Fieux, and F. Syamsudin, 2001: The throughflow within Ombai Strait. Deep-Sea Res., 48, 1237–1253.

  • Murtugudde, R., A. J. Busalacchi, and J. Beauchamp, 1998: Seasonal-to-interannual effects of the Indonesian Throughflow on the tropical Indo-Pacific basin. J. Geophys. Res., 103, 21 425–21 441.

    • Search Google Scholar
    • Export Citation
  • Nof, D., 1996: What controls the origin of the Indonesian throughflow? J. Geophys. Res., 101, 12 301–12 314.

  • Picaut, J., F. Masia, and Y. du Penhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663–666.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., M. Mao, and Y. Kashino, 1999: Intraseasonal variability in the Indo-Pacific Throughflow and the regions surrounding the Indonesian seas. J. Phys. Oceanogr., 29, 1599–1618.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and M. J. Suarez, 1988: Vacillations in a coupled ocean-atmosphere model. J. Atmos. Sci., 45, 549–566.

  • Sprintall, J., A. L. Gordon, R. Murtugudde, and R. D. Susanto, 2000: A semiannual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997. J. Geophys. Res., 105, 17 217–17 230.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.

  • Vranes, K., A. L. Gordon, and A. Field, 2002: The heat transport of the Indonesian Throughflow and implications for Indian Ocean heat budget. Deep-Sea Res. II, 49, 1391–1410.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and M. J. McPhaden, 2001: Surface layer temperature balance in the equatorial Pacific during the 1997–98 El Niño and 1998–99 La Niña. J. Climate, 14, 3393–3407.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., V. O. Magana, T. N. Palmer, J. Shukla, R. A. Tomas, M. Yanai, and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103 (C7), 14 451–14 510.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. Moore, J. Loschnigg, and M. Leban, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356–360.

    • Search Google Scholar
    • Export Citation
  • White, W. B., 1995: Design of a global observing system for gyrescale upper ocean temperature variability. Prog. Oceanogr., 36, 169–217.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., and G. Meyers, 2004: An intersection of oceanic waveguides: Variability in the Indonesian Throughflow region. J. Phys. Oceanogr., 34, 1232–1253.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S. E., G. Meyers, and J. S. Godfrey, 2008: A 20-yr average of the Indonesian Throughflow: Regional currents and the interbasin exchange. J. Phys. Oceanogr., 38, 1965–1978.

    • Search Google Scholar
    • Export Citation
  • Wu, G., and W. Meng, 1998: Gearing between the Indo-monsoon circulation and the Pacific-Walker circulation and the ENSO, Part 1. Data analyses (in Chinese). Chin. J. Atmos. Sci., 22, 470.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Kirtman, 2004: Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17, 3037–3054.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1987: Indonesian Throughflow and the associated pressure gradient. J. Geophys. Res., 92, 12 941–12 946.

  • Yamagata, T., and Y. Masumoto, 1989: A simple ocean-atmosphere coupled model for the origin of a warm El Niño Southern Oscillation event. Philos. Trans. Roy. Soc. London, 329A, 225–236.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., 2009: Interannual horizontal heat advection in the surface mixed layer over the equatorial Pacific Ocean: Assimilation versus TAO analyses. Theor. Appl. Climatol., 97, 3–15, doi:10.1007/s00704-008-0068-7.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., and H. Liu, 2009: Long-wave dynamics of sea level variations during Indian Ocean dipole events. J. Phys. Oceanogr., 39, 1115–1132.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., M. M. Rienecker, and P. S. Schopf, 2004: Long wave dynamics of the interannual variability in a numerical hindcast of the equatorial Pacific Ocean circulation during the 1990s. J. Geophys. Res., 109, C05019, doi:10.1029/2003JC001936.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., and Coauthors, 2011: Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: Roles of the Indonesian Throughflow. J. Climate, 15, 3597–3608.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1663 663 34
PDF Downloads 831 152 14