• Allen, M. R., 2003: Liability for climate change. Nature, 421, 892.

  • Allen, M. R., , and P. A. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting, part I: Theory. Climate Dyn., 21, 477491.

    • Search Google Scholar
    • Export Citation
  • Arribas, A., and Coauthors, 2011: The GloSea4 ensemble prediction system for seasonal forecasting. Mon. Wea. Rev., 139, 18911910.

  • Bintanja, R., , R. G. Graversen, , and W. Hazeleger, 2011: Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nat. Geosci., 4, 758761.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., , M. Dando, , K. R. Mylne, , and S. E. Beare, 2007: The MOGREPS short-range ensemble prediction system: Verification report—Trial performance of MOGREPS January 2006–March 2007. Met Office Tech. Rep. 503, 60 pp.

  • Brohan, P., , J. J. Kennedy, , I. Harris, , S. F. B. Tett, , and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Christidis, N., , P. A. Stott, , S. Brown, , G. C. Hegerl, , and J. Caesar, 2005: Detection of changes in temperature extremes during the second half of the 20th century. Geophys. Res. Lett., 32, L20716, doi:10.1029/2005GL023885.

    • Search Google Scholar
    • Export Citation
  • Christidis, N., , P. A. Stott, , and S. Brown, 2011: The role of human activity in the recent warming of extremely warm daytime temperatures. J. Climate, 24, 19221930.

    • Search Google Scholar
    • Export Citation
  • Christidis, N., , P. A. Stott, , F. W. Zwiers, , H. Shiogama, , and T. Nozawa, 2012: The contribution of anthropogenic forcings to regional changes in temperature during the last decade. Climate Dyn., 39, 12591274.

    • Search Google Scholar
    • Export Citation
  • Collins, M., , B. B. B. Booth, , G. R. Harris, , J. M. Murphy, , D. M. H. Sexton, and M. J. Webb, 2006: Towards quantifying uncertainty in transient climate change. Climate Dyn., 27, 127147.

    • Search Google Scholar
    • Export Citation
  • Darmenov, A. S., , A. da Silva, , P. R. Colarco, , and R. C. Govindaraju, 2010: Investigating the environmental impact of the 2010 Russian fires with the NASA GEOS-5 modeling and data assimilation system. 2010 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A31G-03.

  • Davies, T., , M. J. P. Cullen, , A. J. Malcolm, , M. H. Mawson, , A. Staniforth, , A. A. White, , and N. Wood, 2005: A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 17591782.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Dole, R., and Coauthors, 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, doi:10.1029/2010GL046582.

    • Search Google Scholar
    • Export Citation
  • Funk, C., 2011: We thought trouble was coming. Nature, 476, 7.

  • Gillett, N., , M. R. Allen, , and S. F. B. Tett, 2000: Modelled and observed variability in atmospheric vertical temperature structure. Climate Dyn., 16, 4961.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., , and R. Francisco, 2000: Uncertainties in regional climate change prediction: A regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Climate Dyn., 16, 169182.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1993: Optimal fingerprints for the detection of the time dependent climate change. J. Climate, 6, 19571971.

  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

  • Hewitt, H. T., , D. Copsey, , I. D. Culverwell, , C. M. Harris, , R. S. R. Hill, , A. B. Keen, , A. J. McLaren, , and E. C. Hunke, 2011: Design and implementation of the infrastructure of HadGEM3: The next-generation Met Office climate modelling system. Geosci. Model Dev., 4, 223253.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , K. L. Rasmussen, , S. Medina, , S. R. Brodzik, , and U. Romatschke, 2011: Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull. Amer. Meteor. Soc., 92, 291298.

    • Search Google Scholar
    • Export Citation
  • Hoyos, C. D., , and P. J. Webster, 2007: The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Climate, 20, 44024424.

    • Search Google Scholar
    • Export Citation
  • Ingram, W. J., 2006: Detection and attribution of climate change, and understanding solar influence on climate. Space Sci. Rev., 125, 199211.

    • Search Google Scholar
    • Export Citation
  • Johns, T. C., , R. E. Carnell, , J. F. Crossley, , J. M. Gregory, , J. F. B. Mitchell, , C. A. Senior, , S. F. B. Tett, , and R. A. Wood, 2002: Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Climate Dyn., 20, 583612.

    • Search Google Scholar
    • Export Citation
  • Jones, C. D., and Coauthors, 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543570.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Martin, G. M., , M. A. Ringer, , V. D. Pope, , A. Jones, , C. Dearden, , and T. Hinton, 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology. J. Climate, 19, 12741301.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , J. M. Arblaster, , and C. Tebaldi, 2007: Contributions of natural and anthropogenic forcing to changes in temperature exremes over the United States. Geophys. Res. Lett., 34, L19709, doi:10.1029/2007GL030948.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., , X. Zhang, , F. W. Zwiers, , and G. C. Hegerl, 2011: Human contribution to more intense precipitation events. Nature, 470, 378381.

    • Search Google Scholar
    • Export Citation
  • Morak, S., , G. C. Hegerl, , and J. Kenyon, 2011: Detectable regional changes in the number of warm nights. Geophys. Res. Lett., 38, L17703, doi:10.1029/2011GL048531.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., , D. M. H. Sexton, , D. N. Barnett, , G. S. Jones, , M. J. Webb, , M. Collins, , and D. A. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772.

    • Search Google Scholar
    • Export Citation
  • Pall, P., , T. Aina, , D. A. Stone, , P. A. Stott, , T. Nozawa, , A. G. J. Hilberts, , D. Lohmann, , and M. R. Allen, 2011: Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470, 382385.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., , P. A. Stott, , and S. Herring, Eds., 2012: Explaining extreme events of 2011 from a climate perspective. Bull. Amer. Meteor. Soc., 93, 10411067.

    • Search Google Scholar
    • Export Citation
  • Pope, V. D., , and R. A. Stratton, 2002: The processes governing horizontal resolution sensitivity in a climate model. Climate Dyn., 19, 211236.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., , and D. Coumou, 2011: Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA, 108, 17 90517 909, doi:10.1073/pnas.1101766108.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Robine, J.-M., , S.-L. K. Cheung, , S. Le Roy, , H. Van Oyen, , C. Griffiths, , J.-P. Michel, , and F. R. Herrmann, 2008: Death toll exceeded 70,000 in Europe during the summer of 2003. C. R. Biol., 331, 171178.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., , S. Cusack, , A. W. Colman, , C. K. Folland, , G. R. Harris, , and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796799.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., , R. Eade, , N. J. Dunstone, , D. Fereday, , J. M. Murphy, , H. Pohlmann, , and A. A. Scaife, 2010: Skilful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci., 3, 846849.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., , D. A. Stone, , and M. R. Allen, 2004: Human contribution to the European heatwave of 2003. Nature, 432, 610613.

  • Stott, P. A., , G. S. Jones, , J. A. Lowe, , P. Thorne, , C. F. Durman, , T. C. Jones, , and J.-C. Thelen, 2006: Transient climate simulations with the HadGEM1 climate model: Causes of past warming and future climate change. J. Climate, 19, 27632782.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., , N. Christidis, , and R. A. Betts, 2011a: Changing return periods of weather-related impacts: The attribution challenge. Climatic Change, 109, 263268.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., , G. S. Jones, , N. Christidis, , F. W. Zwiers, , G. Hegerl, , and H. Shiogama, 2011b: Single-step attribution of increasing frequencies of very warm regional temperatures to human influence. Atmos. Sci. Lett., 12, 220227.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and Coauthors, 2012: Attribution of weather and climate-related extreme events. WCRP Position Paper, 44 pp. [Available online at www.wcrp-climate.org/conference2011/documents/Stott.pdf.]

  • Stouffer, R. J., , G. C. Hegerl, , and S. F. B. Tett, 2000: A comparison of surface air temperature variability in three 1000-yr coupled ocean–atmosphere model integrations. J. Climate, 13, 513537.

    • Search Google Scholar
    • Export Citation
  • Sweet, M., 2011: Australia faces huge rebuild after devastating floods. BMJ, 342, doi:10.1136/bmj.d362.

  • Tennant, W. J., , G. J. Shutts, , A. Arribas, , and S. A. Thompson, 2011: Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon. Wea. Rev., 139, 11901206.

    • Search Google Scholar
    • Export Citation
  • Webb, M. J., and Coauthors, 2006: On uncertainty in feedback mechanisms controlling climate sensitivity in two GCM ensembles. Climate Dyn., 27, 1738.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , V. E. Toma, , and H.-M. Kim, 2011: Were the 2010 Pakistan floods predictable? Geophys. Res. Lett., 38, L04806, doi:10.1029/2010GL046346.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Zwiers, F. W., , X. Zhang, , and Y. Feng, 2011: Anthropogenic influence on long return period daily temperature extremes at regional scales. J. Climate, 24, 296307.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 267 267 41
PDF Downloads 177 177 21

A New HadGEM3-A-Based System for Attribution of Weather- and Climate-Related Extreme Events

View More View Less
  • 1 Met Office Hadley Centre, Exeter, United Kingdom
© Get Permissions
Restricted access

Abstract

A new system for attribution of weather and climate extreme events has been developed based on the atmospheric component of the latest Hadley Centre model. The model is run with either observational data of sea surface temperature and sea ice or estimates of what their values would be without the effect of anthropogenic climatic forcings. In that way, ensembles of simulations are produced that represent the climate with and without the effect of human influences. A comparison between the ensembles provides estimates of the change in the frequency of extremes due to anthropogenic forcings. To evaluate the new system, reliability diagrams are constructed, which compare the model-derived probability of extreme events with their observed frequency. The ability of the model to reproduce realistic distributions of relevant climatic variables is another key aspect of the system evaluation. Results are then presented from analyses of three recent high-impact events: the 2009/10 cold winter in the United Kingdom, the heat wave in Moscow in July 2010, and floods in Pakistan in July 2010. An evaluation assessment indicates the model can provide reliable results for the U.K. and Moscow events but not for Pakistan. It is found that without anthropogenic forcings winters in the United Kingdom colder than 2009/10 would be 7–10 times (best estimate) more common. Although anthropogenic forcings increase the likelihood of heat waves in Moscow, the 2010 event is found to be very uncommon and associated with a return time of several hundred years. No reliable attribution assessment can be made for high-precipitation events in Pakistan.

Corresponding author address: Nikolaos Christidis, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: nikos.christidis@metoffice.gov.uk

Abstract

A new system for attribution of weather and climate extreme events has been developed based on the atmospheric component of the latest Hadley Centre model. The model is run with either observational data of sea surface temperature and sea ice or estimates of what their values would be without the effect of anthropogenic climatic forcings. In that way, ensembles of simulations are produced that represent the climate with and without the effect of human influences. A comparison between the ensembles provides estimates of the change in the frequency of extremes due to anthropogenic forcings. To evaluate the new system, reliability diagrams are constructed, which compare the model-derived probability of extreme events with their observed frequency. The ability of the model to reproduce realistic distributions of relevant climatic variables is another key aspect of the system evaluation. Results are then presented from analyses of three recent high-impact events: the 2009/10 cold winter in the United Kingdom, the heat wave in Moscow in July 2010, and floods in Pakistan in July 2010. An evaluation assessment indicates the model can provide reliable results for the U.K. and Moscow events but not for Pakistan. It is found that without anthropogenic forcings winters in the United Kingdom colder than 2009/10 would be 7–10 times (best estimate) more common. Although anthropogenic forcings increase the likelihood of heat waves in Moscow, the 2010 event is found to be very uncommon and associated with a return time of several hundred years. No reliable attribution assessment can be made for high-precipitation events in Pakistan.

Corresponding author address: Nikolaos Christidis, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, United Kingdom. E-mail: nikos.christidis@metoffice.gov.uk
Save