The Role of Oceans and Sea Ice in Abrupt Transitions between Multiple Climate States

Brian E. J. Rose Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Brian E. J. Rose in
Current site
Google Scholar
PubMed
Close
,
David Ferreira Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by David Ferreira in
Current site
Google Scholar
PubMed
Close
, and
John Marshall Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by John Marshall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The coupled climate dynamics underlying large, rapid, and potentially irreversible changes in ice cover are studied. A global atmosphere–ocean–sea ice general circulation model with idealized aquaplanet geometry is forced by gradual multi-millennial variations in solar luminosity. The model traverses a hysteresis loop between warm ice-free conditions and cold glacial conditions in response to ±5 W m−2 variations in global, annual-mean insolation. Comparison of several model configurations confirms the importance of polar ocean processes in setting the sensitivity and time scales of the transitions. A “sawtooth” character is found with faster warming and slower cooling, reflecting the opposing effects of surface heating and cooling on upper-ocean buoyancy and, thus, effective heat capacity. The transition from a glacial to warm, equable climate occurs in about 200 years.

In contrast to the “freshwater hosing” scenario, transitions are driven by radiative forcing and sea ice feedbacks. The ocean circulation, and notably the meridional overturning circulation (MOC), does not drive the climate change. The MOC (and associated heat transport) collapses poleward of the advancing ice edge, but this is a purely passive response to cooling and ice expansion. The MOC does, however, play a key role in setting the time scales of the transition and contributes to the asymmetry between warming and cooling.

Corresponding author address: Brian Rose, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: brose@atmos.washington.edu

Abstract

The coupled climate dynamics underlying large, rapid, and potentially irreversible changes in ice cover are studied. A global atmosphere–ocean–sea ice general circulation model with idealized aquaplanet geometry is forced by gradual multi-millennial variations in solar luminosity. The model traverses a hysteresis loop between warm ice-free conditions and cold glacial conditions in response to ±5 W m−2 variations in global, annual-mean insolation. Comparison of several model configurations confirms the importance of polar ocean processes in setting the sensitivity and time scales of the transitions. A “sawtooth” character is found with faster warming and slower cooling, reflecting the opposing effects of surface heating and cooling on upper-ocean buoyancy and, thus, effective heat capacity. The transition from a glacial to warm, equable climate occurs in about 200 years.

In contrast to the “freshwater hosing” scenario, transitions are driven by radiative forcing and sea ice feedbacks. The ocean circulation, and notably the meridional overturning circulation (MOC), does not drive the climate change. The MOC (and associated heat transport) collapses poleward of the advancing ice edge, but this is a purely passive response to cooling and ice expansion. The MOC does, however, play a key role in setting the time scales of the transition and contributes to the asymmetry between warming and cooling.

Corresponding author address: Brian Rose, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195. E-mail: brose@atmos.washington.edu
Save
  • Adcroft, A., and J.-M. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modell., 7, 269284.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., I. Eisenman, E. Blanchard-Wrigglesworth, K. E. McCusker, and C. M. Bitz, 2011: The reversibility of sea ice loss in a state-of-the-art climate model. Geophys. Res. Lett., 38, L16705, doi:10.1029/2011GL048739.

    • Search Google Scholar
    • Export Citation
  • Bitz, C., J. Chiang, W. Cheng, and J. Barsugli, 2007: Rates of thermohaline recovery from freshwater pulses in modern, Last Glacial Maximum, and greenhouse warming climates. Geophys. Res. Lett., 34, L07708, doi:10.1029/2006GL029237.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3, 261277.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1990: Salinity history of the northern Atlantic during the last deglaciation. Paleoceanography, 5, 459467.

  • Broecker, W. S., D. M. Peteet, and D. Rind, 1985: Does the ocean–atmosphere system have more than one stable mode of operation? Nature, 315, 2126.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., G. Bond, M. Klas, G. Bonani, and W. Wolfli, 1990: A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography, 5, 469477.

    • Search Google Scholar
    • Export Citation
  • Budyko, M., 1969: The effect of solar radiation variations on the climate of the earth. Tellus, 21, 611619.

  • Campin, J.-M., J. Marshall, and D. Ferreira, 2008: Sea ice–ocean coupling using a rescaled vertical coordinate z*. Ocean Modell., 24, 114.

    • Search Google Scholar
    • Export Citation
  • Cheng, W., C. M. Bitz, and J. C. Chiang, 2007: Adjustment of the global climate to an abrupt slowdown of the Atlantic meridional overturning circulation. Ocean Circulation: Mechanisms and Impacts, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 295–313.

  • Clement, A. C., and L. C. Peterson, 2008: Mechanisms of abrupt climate change of the last glacial period. Rev. Geophys., 46, RG4002, doi:10.1029/2006RG000204.

    • Search Google Scholar
    • Export Citation
  • de Vernal, A., and C. Hillaire-Marcel, 2000: Sea-ice cover, sea-surface salinity and halo-/thermocline structure of the northwest North Atlantic: Modern versus full glacial conditions. Quat. Sci. Rev., 19, 6585.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., and D. S. Battisti, 2011: Atmospheric and surface contributions to planetary albedo. J. Climate, 24, 44024418.

  • Eisenman, I., 2012: Factors controlling the bifurcations structure of sea ice retreat. J. Geophys. Res., 117, D01111, doi:10.1029/2011JD016164.

    • Search Google Scholar
    • Export Citation
  • Enderton, D., and J. Marshall, 2009: Explorations of atmosphere–ocean–ice climates on an aquaplanet and their meridional energy transports. J. Atmos. Sci., 66, 15931611.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and J.-M. Campin, 2010: Localization of deep water formation: Role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Climate, 23, 14561476.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and B. E. J. Rose, 2011: Climate determinism revisited: Multiple equilibria in a complex climate model. J. Climate, 24, 9921012.

    • Search Google Scholar
    • Export Citation
  • Gent, P., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Gildor, H., and E. Tziperman, 2003: Sea-ice switches and abrupt climate change. Philos. Trans. Roy. Soc. London, 361A, 19351944.

  • Hawkins, E., R. S. Smith, L. C. Allison, J. M. Gregory, T. J. Woollings, H. Pohlmann, and B. de Cuevas, 2011: Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys. Res. Lett., 38, L10605, doi:10.1029/2011GL047208.

    • Search Google Scholar
    • Export Citation
  • Huybers, P., 2011: Combined obliquity and precession pacing of late Pleistocene deglaciations. Nature, 480, 229232.

  • Huybers, P., and C. Wunsch, 2004: A depth-derived Pleistocene age model: Uncertainty estimates, sedimentation variability, and nonlinear climate change. Paleoceanography, 19, PA1028, doi:10.1029/2002PA000857.

    • Search Google Scholar
    • Export Citation
  • Imbrie, J., and Coauthors, 1984: The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. Milankovitch and Climate, Part 1, A. Berger et al., Eds., D. Reidel, 269–305.

  • Jackett, D. R., and T. J. Mcdougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., and J. Marotzke, 2000: Meridional heat transport by the subtropical cell. J. Phys. Oceanogr., 30, 696705.

  • Klinger, B. A., J. Marshall, and U. Send, 1996: Representation of convective plumes by vertical adjustment. J. Geophys. Res., 101 (C8), 18 17518 182.

    • Search Google Scholar
    • Export Citation
  • Li, C., D. S. Battisti, D. P. Schrag, and E. Tziperman, 2005: Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophys. Res. Lett., 32, L19702, doi:10.1029/2005GL023492.

    • Search Google Scholar
    • Export Citation
  • Li, C., D. S. Battisti, and C. M. Bitz, 2010: Can North Atlantic sea ice anomalies account for Dansgaard–Oeschger climate signals? J. Climate, 23, 54575475.

    • Search Google Scholar
    • Export Citation
  • Loutre, M.-F., D. Paillard, F. Vimeux, and E. Cortijo, 2004: Does mean annual insolation have the potential to change the climate? Earth Planet. Sci. Lett., 221, 114.

    • Search Google Scholar
    • Export Citation
  • Loving, J. L., and G. K. Vallis, 2005: Mechanisms for climate variability during glacial and interglacial periods. Paleoceanography, 20, PA4024, doi:10.1029/2004PA001113.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1995: Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature, 378, 165167.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., and M. Botzet, 2007: Present-day and ice-covered equilibrium states in a comprehensive climate model. Geophys. Res. Lett., 34, L16704, doi:10.1029/2006GL028880.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, J.-M. Campin, C. Hill, and A. White, 2004: Atmosphere–ocean modeling exploiting fluid isomorphisms. Mon. Wea. Rev., 132, 28822894.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Ferreira, J.-M. Campin, and D. Enderton, 2007: Mean climate and variability of the atmosphere and ocean on an aquaplanet. J. Atmos. Sci., 64, 42704286.

    • Search Google Scholar
    • Export Citation
  • McManus, J. F., R. François, J.-M. Gherardi, L. D. Keigwin, and S. Brown-Leger, 2004: Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834837.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., 2003: Atmospheric simulations using a GCM with simplified physical parametrizations. I: Model climatology and variability in multi-decadal experiments. Climate Dyn., 20, 175191.

    • Search Google Scholar
    • Export Citation
  • North, G. R., 1990: Multiple solutions in energy balance climate models. Palaeogeogr. Palaeoclimatol. Palaeoecol., 82, 225235.

  • North, G. R., L. Howard, D. Pollard, and B. Wielicki, 1979: Variational formulation of Budyko–Sellers climate models. J. Atmos. Sci., 36, 255259.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and P. Turet, 1994: Variability of the atmospheric energy flux across 70°N computed from the GFDL data set. The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 313–325.

  • Paillard, D., 1998: The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature, 391, 378381.

  • Porter, D. F., J. J. Cassano, M. C. Serreze, and D. N. Kindig, 2010: New estimates of the large-scale Arctic atmospheric energy budget. J. Geophys. Res., 115, D08108, doi:10.1029/2009JD012653.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 2002: Ocean circulation and climate during the past 120,000 years. Nature, 419, 207214.

  • Rahmstorf, S., and Coauthors, 2005: Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett., 32, L23605, doi:10.1029/2005GL023655.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158.

  • Rind, D., D. Shindell, J. Perlwitz, J. Lerner, P. Lonergan, J. Lean, and C. McLinden, 2004: The relative importance of solar and anthropogenic forcing of climate change between the Maunder Minimum and the present. J. Climate, 17, 906929.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2006: In defense of Milankovitch. Geophys. Res. Lett., 33, L24703, doi:10.1029/2006GL027817.

  • Rose, B. E. J., and J. Marshall, 2009: Ocean heat transport, sea ice, and multiple climate states: Insights from energy balance models. J. Atmos. Sci., 66, 28282843.

    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., and D. Ferreira, 2013: Ocean heat transport and water vapor greenhouse in a warm equable climate: A new look at the low gradient paradox. J. Climate, 26, 21172136.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and D. S. Battisti, 2007: Challenges to our understanding of the general circulation: Abrupt climate change. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 331–371.

  • Serreze, M. C., A. P. Barrett, A. G. Slater, M. Steele, J. Zhang, and K. E. Trenberth, 2007: The large-scale energy budget of the Arctic. J. Geophys. Res., 112, D11122, doi:10.1029/2006JD008230.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., 2004: Time scales of climate response. J. Climate, 17, 209217.

  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., M. E. Raymo, P. Huybers, and C. Wunsch, 2006: Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing. Paleoceanography, 21, PA4206, doi:10.1029/2005PA001241.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and L. A. Mysak, 2006: Glacial abrupt climate changes and Dansgaard–Oeschger oscillations in a coupled climate model. Paleoceanography, 21, PA2001, doi:10.1029/2005PA001238.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525531.

  • Winton, M., 2006: Does the arctic sea ice have a tipping point? Geophys. Res. Lett., 33, L23504, doi:10.1029/2006GL028017.

  • Winton, M., and E. Sarachik, 1993: Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J. Phys. Oceanogr., 23, 13891410.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2006: Abrupt climate change: An alternative view. Quat. Res., 65, 191203.

  • Wunsch, C., 2010: Towards understanding the Paleocean. Quat. Sci. Rev., 29, 19601967.

  • Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups, 2001: Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686693.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1847 964 83
PDF Downloads 574 138 11