The Impact of Oceanic Near-Inertial Waves on Climate

Markus Jochum Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Markus Jochum in
Current site
Google Scholar
PubMed
Close
,
Bruce P. Briegleb National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Bruce P. Briegleb in
Current site
Google Scholar
PubMed
Close
,
Gokhan Danabasoglu National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Gokhan Danabasoglu in
Current site
Google Scholar
PubMed
Close
,
William G. Large National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by William G. Large in
Current site
Google Scholar
PubMed
Close
,
Nancy J. Norton National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Nancy J. Norton in
Current site
Google Scholar
PubMed
Close
,
Steven R. Jayne Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Steven R. Jayne in
Current site
Google Scholar
PubMed
Close
,
Matthew H. Alford Applied Physics Laboratory, Seattle, Washington

Search for other papers by Matthew H. Alford in
Current site
Google Scholar
PubMed
Close
, and
Frank O. Bryan National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Frank O. Bryan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Community Climate System Model, version 4 (CCSM4) is used to assess the climate impact of wind-generated near-inertial waves (NIWs). Even with high-frequency coupling, CCSM4 underestimates the strength of NIWs, so that a parameterization for NIWs is developed and included into CCSM4. Numerous assumptions enter this parameterization, the core of which is that the NIW velocity signal is detected during the model integration, and amplified in the shear computation of the ocean surface boundary layer module. It is found that NIWs deepen the ocean mixed layer by up to 30%, but they contribute little to the ventilation and mixing of the ocean below the thermocline. However, the deepening of the tropical mixed layer by NIWs leads to a change in tropical sea surface temperature and precipitation. Atmospheric teleconnections then change the global sea level pressure fields so that the midlatitude westerlies become weaker. Unfortunately, the magnitude of the real air-sea flux of NIW energy is poorly constrained by observations; this makes the quantitative assessment of their climate impact rather uncertain. Thus, a major result of the present study is that because of its importance for global climate the uncertainty in the observed tropical NIW energy has to be reduced.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Markus Jochum, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark. E-mail: mjochum@nbi.dk

Abstract

The Community Climate System Model, version 4 (CCSM4) is used to assess the climate impact of wind-generated near-inertial waves (NIWs). Even with high-frequency coupling, CCSM4 underestimates the strength of NIWs, so that a parameterization for NIWs is developed and included into CCSM4. Numerous assumptions enter this parameterization, the core of which is that the NIW velocity signal is detected during the model integration, and amplified in the shear computation of the ocean surface boundary layer module. It is found that NIWs deepen the ocean mixed layer by up to 30%, but they contribute little to the ventilation and mixing of the ocean below the thermocline. However, the deepening of the tropical mixed layer by NIWs leads to a change in tropical sea surface temperature and precipitation. Atmospheric teleconnections then change the global sea level pressure fields so that the midlatitude westerlies become weaker. Unfortunately, the magnitude of the real air-sea flux of NIW energy is poorly constrained by observations; this makes the quantitative assessment of their climate impact rather uncertain. Thus, a major result of the present study is that because of its importance for global climate the uncertainty in the observed tropical NIW energy has to be reduced.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Markus Jochum, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark. E-mail: mjochum@nbi.dk
Save
  • Alford, M. H., 2003: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, doi:10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and M. Whitmont, 2007: Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr., 37, 20222037.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Z. Zhao, 2007: Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. J. Phys. Oceanogr., 37, 18291848.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. F. Cronin, and J. M. Klymak, 2012: Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the northeast Pacific. J. Phys. Oceanogr., 42, 889909.

    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., O. Pizarro, and W. Rojas, 2008: Global climatology of near-inertial current characteristics from Lagrangian observations. Geophys. Res. Lett., 35, L13603, doi:10.1029/2008GL034060.

    • Search Google Scholar
    • Export Citation
  • Crawford, G. B., and W. G. Large, 1996: Numerical investigation of resonant inertial response of the ocean to wind forcing. J. Phys. Oceanogr., 26, 873891.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and J. Marshall, 2007: Effects of vertical variations of thickness diffusivity in an ocean general circulation model. Ocean Modell., 18, 122141.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012a: The CCSM4 ocean component. J. Climate, 25, 13611389.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. G. Yeager, Y.-O. Kwon, J. J. Tribbia, A. S. Phillips, and J. W. Hurrell, 2012b: Variability of the Atlantic meridional overturning circulation in CCSM4. J. Climate, 25, 51535172.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15, 10431059.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1995: A collection of papers on the Oecan Storms Experiment—An introduction. J. Phys. Oceanogr., 25, 28172818.

  • Dohan, K., and R. E. Davis, 2011: Mixing in the transition layer during two storm events. J. Phys. Oceanogr., 41, 4266.

  • Eden, C., and R. J. Greatbatch, 2008: Diapycnal mixing by meso-scale eddies. Ocean Modell., 23, 113120.

  • Elipot, S., and R. Lumpkin, 2008: Spectral description of oceanic near-surface variability. Geophys. Res. Lett., 35, L05606, doi:10.1029/2007GL032874.

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., 1981: Observations and models of inertial waves in the deep ocean. Rev. Geophys. Space Phys., 19, 141170.

  • Furuichi, N., T. Hibiya, and Y. Niwa, 2008: Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res., 113, C09034, doi:10.1029/2008JC004768.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 2001: What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31, 962971.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991.

  • Gill, A., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Gordon, A. L., and Coauthors, 2010: The Indonesian Throughflow during 2004-2006 as observed by the INSTANT program. Dyn. Atmos. Oceans, 50, 115128.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and M. N. Raphael, 2006: Twentieth century simulation of the southern hemisphere climate in coupled models. Part II: Sea ice conditions and variability. Climate Dyn., 26, 229245.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., 1983: Dynamical processes in the atmosphere and the use of models. Quart. J. Roy. Meteor. Soc., 109, 121.

  • Hurrell, J. W., and K. E. Trenberth, 1999: Global SST analyses: Multiple problems and their implications for climate analysis. Bull. Amer. Meteor. Soc., 80, 26612678.

    • Search Google Scholar
    • Export Citation
  • Ivey, G. N., and J. Imberger, 1991: On the nature of turbulence in a stratified fluid. Part I: The energetics of mixing. J. Phys. Oceanogr., 21, 650658.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814.

  • Jiang, J., Y. Liu, and W. Perrie, 2005: Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett., 32, L15610, doi:10.1029/2005GL023289.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., 2009: Impact of latitudinal variations in vertical diffusivity on climate simulations. J. Geophys. Res., 114, C01010, doi:10.1029/2008JC005030.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., and J. Potemra, 2008: Sensitivity of tropical rainfall to Banda Sea diffusivity in the Community Climate System Model. J. Climate, 21, 64456454.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., G. Danabasoglu, M. Holland, Y.-O. Kwon, and W. Large, 2008: Ocean viscosity and climate. J. Geophys. Res., 113, C06017, doi:10.1029/2007JC004515.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., A. Jahn, S. Peacock, D. A. Bailey, J. T. Fasullo, J. Kay, S. Levis, and B. Otto-Bliesner, 2012: True to Milankovitch: Glacial inception in the new Community Climate System Model. J. Climate, 25, 22262239.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Large, W. G., and G. B. Crawford, 1995: Observations and simulations of upper-ocean response to wind events during the Ocean Storms Experiment. J. Phys. Oceanogr., 25, 28312852.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and P. Gent, 1999: Validation of vertical mixing in an equatorial ocean model using large eddy simulations and observations. J. Phys. Oceanogr., 29, 449464.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Yeager, 2008: The global climatology of an interannually varying air-sea flux dataset. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-00441-3.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing—A review and a model with nonlocal parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • LeBlond, P. H., and L. A. Mysak, 1978: Waves in the Ocean. Elsevier, 616 pp.

  • Ledwell, J. R., L. C. St. Laurent, J. B. Girton, and J. M. Toole, 2011: Diapycnal mixing in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 41, 241246.

    • Search Google Scholar
    • Export Citation
  • Levine, M., C. Paulson, and J. Morison, 1985: Internal waves in the Arctic Ocean—Comparison with lower latitude observations. J. Phys. Oceanogr., 15, 800809.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R., and S. Nigam, 1987: On the role of SST gradients in forcing low level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2009: Transient simulation of last deglaciation with a new mechanism for Bolling–Allerod warming. Science, 325, 310314.

    • Search Google Scholar
    • Export Citation
  • McClean, J. L., and Coauthors, 2011: A prototype two-decade fully-coupled fine-resolution CCSM simulation. Ocean Modell., 39, 1030.

  • McCreary, J., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24, 466497.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipies II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010.

  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389.

  • Park, J. J., K. Kim, and B. A. King, 2005: Global statistics of inertial motions. Geophys. Res. Lett., 32, L14612, doi:10.1029/2005GL023258.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: An inertial theory for the equatorial undercurrent. J. Phys. Oceanogr., 17, 19781985.

  • Plueddeman, A. J., and J. T. Farrar, 2006: Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep-Sea Res. II, 53, 530.

    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech., 5, 136139.

  • Rudels, B., L. Anderson, and E. Jones, 1996: Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. J. Geophys. Res., 101 (C4), 88078822.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., and J. D. Nash, 2004: An examination of the radiative and dissipative properties of deep ocean internal tides. Deep-Sea Res. II, 51, 30293042.

    • Search Google Scholar
    • Export Citation
  • Tandon, A., and C. Garrett, 1996: On a recent parameterization of mesoscale eddies. J. Phys. Oceanogr., 26, 406411.

  • Ting, M. F., and P. D. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50, 907918.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103 (C7), 14 29114 324.

    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., 1982: On the Pacific upper-water circulation. J. Mar. Res., 40, 777799.

  • Wang, D. L., W. G. Large, and J. C. McWilliams, 1996: Large-eddy simulation of the equatorial ocean boundary layer: Diurnal cycling, eddy viscosity, and horizontal rotation. J. Geophys. Res., 101 (C2), 36493662.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2221 865 68
PDF Downloads 1449 362 31