Modulation of Western North Pacific Tropical Cyclone Activity by the ISO. Part II: Tracks and Landfalls

Richard C. Y. Li Guy Carpenter Asia–Pacific Climate Impact Center, School of Energy and Environment, City University of Hong Kong, Hong Kong, China

Search for other papers by Richard C. Y. Li in
Current site
Google Scholar
PubMed
Close
and
Wen Zhou Guy Carpenter Asia–Pacific Climate Impact Center, School of Energy and Environment, City University of Hong Kong, Hong Kong, China

Search for other papers by Wen Zhou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates how tropical cyclone (TC) tracks and landfalls are modulated by the two major components of the intraseasonal oscillation (ISO), the 30–60-day Madden–Julian oscillation (MJO) and the 10–20-day quasi-biweekly oscillation (QBWO). In the convective phases of the MJO (phases 7 + 8 and 1 + 2), the western North Pacific Ocean (WNP) is mainly clustered with westward- and northwestward-moving TCs. The strong easterlies (southeasterlies) in the southern flank of the subtropical high lead to an increase in TC activity and landfalls in the Philippines and Vietnam (China and Japan) in phase 7 + 8 (phase 1 + 2). In the nonconvective phases (phases 3 + 4 and 5 + 6), TCs change from the original straight-moving type to the recurving type, such that the tendency for landfalls is significantly reduced. The QBWO, on the other hand, has a significant influence on TC landfalls in the Philippines and Japan. The strengthening of the subtropical high in phase 1 + 2 favors the development of westward-moving TCs and results in an increase in landfalls in the Philippines, while in phase 3 + 4 (phase 5 + 6), there is an increase (decrease) in TC activity and landfalls in Japan because of changes in genesis locations and large-scale circulations. The results herein suggest that both the MJO and QBWO exert distinctive impacts on TCs in the WNP.

Corresponding author address: Dr. Wen Zhou, Guy Carpenter Asia–Pacific Climate Impact Center, School of Energy and Environment, City University of Hong Kong, Hong Kong, China. E-mail: wenzhou@cityu.edu.hk

Abstract

This study investigates how tropical cyclone (TC) tracks and landfalls are modulated by the two major components of the intraseasonal oscillation (ISO), the 30–60-day Madden–Julian oscillation (MJO) and the 10–20-day quasi-biweekly oscillation (QBWO). In the convective phases of the MJO (phases 7 + 8 and 1 + 2), the western North Pacific Ocean (WNP) is mainly clustered with westward- and northwestward-moving TCs. The strong easterlies (southeasterlies) in the southern flank of the subtropical high lead to an increase in TC activity and landfalls in the Philippines and Vietnam (China and Japan) in phase 7 + 8 (phase 1 + 2). In the nonconvective phases (phases 3 + 4 and 5 + 6), TCs change from the original straight-moving type to the recurving type, such that the tendency for landfalls is significantly reduced. The QBWO, on the other hand, has a significant influence on TC landfalls in the Philippines and Japan. The strengthening of the subtropical high in phase 1 + 2 favors the development of westward-moving TCs and results in an increase in landfalls in the Philippines, while in phase 3 + 4 (phase 5 + 6), there is an increase (decrease) in TC activity and landfalls in Japan because of changes in genesis locations and large-scale circulations. The results herein suggest that both the MJO and QBWO exert distinctive impacts on TCs in the WNP.

Corresponding author address: Dr. Wen Zhou, Guy Carpenter Asia–Pacific Climate Impact Center, School of Energy and Environment, City University of Hong Kong, Hong Kong, China. E-mail: wenzhou@cityu.edu.hk
Save
  • Bowman, A. W., and A. Azzalini, 1997: Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations. Oxford University Press, 193 pp.

  • Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2005: The physics of tropical cyclone motion. Annu. Rev. Fluid Mech., 37, 99128.

  • Chand, S. S., and K. J. E. Walsh, 2010: The influence of the Madden–Julian oscillation on tropical cyclone activity in the Fiji region. J. Climate, 23, 868886.

    • Search Google Scholar
    • Export Citation
  • Chen, T. C., S. Y. Wang, M. C. Yen, and A. J. Clark, 2009: Impact of the intraseasonal variability of the western North Pacific large-scale circulation on tropical cyclone tracks. Wea. Forecasting, 24, 646666.

    • Search Google Scholar
    • Export Citation
  • Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 29342944.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Hall, J. D., A. J. Matthews, and D. J. Karoly, 2001: The modulation of tropical cyclone activity in the Australian region by the Madden–Julian oscillation. Mon. Wea. Rev., 129, 29702982.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1991: Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Mon. Wea. Rev., 119, 14481468.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1995a: Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Mon. Wea. Rev., 123, 12251246.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1995b: Large-scale circulation variability over the tropical western North Pacific. Part II: Persistence and transition characteristics. Mon. Wea. Rev., 123, 12471268.

    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., J.-J. Baik, J.-H. Kim, D.-Y. Gong, and C.-H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 17671776.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kim, H. M., P. J. Webster, and J. A. Curry, 2011: Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J. Climate, 24, 18391849.

    • Search Google Scholar
    • Export Citation
  • Kim, J., C. Ho, H. Kim, C. Sui, and S. K. Park, 2008: Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden–Julian oscillation. J. Climate, 21, 11711191.

    • Search Google Scholar
    • Export Citation
  • Li, R., and W. Zhou, 2012: Changes in western Pacific tropical cyclones associated with the El Niño–Southern Oscillation cycle. J. Climate, 25, 58645878.

    • Search Google Scholar
    • Export Citation
  • Li, R., and W. Zhou, 2013: Modulation of western North Pacific tropical cyclone activities by the ISO. Part I: Genesis and intensity. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Li, R., W. Zhou, J. Chan, and P. Huang, 2012: Asymmetric modulation of western North Pacific cyclogenesis by the Madden–Julian oscillation under ENSO conditions. J. Climate, 25, 53745385.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Mao, J. Y., and J. C. L. Chan, 2005: Intraseasonal variability of the South China Sea summer monsoon. J. Climate, 18, 23882402.

  • Pohl, B., and A. J. Matthews, 2007: Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J. Climate, 20, 26592674.

    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., L. M. Leslie, P. J. Lamb, M. B. Richman, and M. Leplastrier, 2008: Interannual variability of tropical cyclones in the Australian region: Role of large-scale environment. J. Climate, 21, 10831103.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658.

    • Search Google Scholar
    • Export Citation
  • Wu, M. C., W. L. Chang, and W. M. Leung, 2004: Impacts of El Niño–Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific. J. Climate, 17, 14191428.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific. J. Climate, 15, 24292445.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., and J. C. L. Chan, 2005: Intraseasonal oscillations and the South China Sea summer monsoon onset. Int. J. Climatol., 25, 15851609.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., and J. C. L. Chan, 2007: ENSO and South China Sea summer monsoon onset. Int. J. Climatol., 27, 157167.

  • Zhou, W., C. Y. Li, and X. Wang, 2007a: Possible connection between Pacific oceanic interdecadal pathway and East Asian winter monsoon. Geophys. Res. Lett., 34, L01701, doi:10.1029/2006GL027809.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., X. Wang, T. J. Zhou, C. Li, and J. C. L. Chan, 2007b: Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO. Meteor. Atmos. Phys., 98, 283293.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2232 750 50
PDF Downloads 796 211 33