• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., , and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232; Corrigendum, 489, 590.

    • Search Google Scholar
    • Export Citation
  • Bloom, S. A., and Coauthors, 2005: Documentation and validation of the Goddard Earth Observing System (GEOS) data assimilation system, version 4. Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2005-104606, Vol. 26, 161 pp. [Available online at http://gmao.gsfc.nasa.gov/systems/geos4/.]

  • Bourlès, B., and Coauthors, 2008: The PIRATA Program: History, accomplishments, and future directions. Bull. Amer. Meteor. Soc., 89, 11111125.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926.

    • Search Google Scholar
    • Export Citation
  • Colbo, K., , and R. A. Weller, 2009: Accuracy of the IMET sensor package in the subtropics. J. Atmos. Oceanic Technol., 26, 18671890.

  • Doelling, D. R., , N. Loeb, , D. F. Keyes, , M. L. Nordeen, , D. Morstad, , B. A. Wielicki, , D. F. Young, , and M. Sun, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., in press.

  • Gupta, S. K., , N. A. Ritchey, , A. C. Wilber, , C. H. Whitlock, , G. G. Gibson, , and P. W. Stackhouse Jr., 1999: A climatology of surface radiation budget derived from satellite data. J. Climate, 12, 26912710.

    • Search Google Scholar
    • Export Citation
  • Hanafin, J. A., , and P. J. Minnett, 2005: Measurements of the infrared emissivity of a wind-roughened sea surface. Appl. Opt., 44, 398411.

    • Search Google Scholar
    • Export Citation
  • Jin, Z., , T. P. Charlock, , W. L. Smith Jr., , and K. Rutledge, 2004: A parameterization ocean surface albedo. Geophys. Res. Lett., 31, L22301, doi:10.1029/2004GL021180.

    • Search Google Scholar
    • Export Citation
  • Kato, S., , F. G. Rose, , D. A. Rutan, , and T. P. Charlock, 2008: Cloud effects on meridional atmospheric energy budget estimated from Clouds and the Earth’s Radiant Energy System (CERES) data. J. Climate, 21, 42234241.

    • Search Google Scholar
    • Export Citation
  • Kato, S., , S. Sun-Mack, , W. F. Miller, , F. G. Rose, , Y. Chen, , P. Minnis, , and B. A. Wielicki, 2010: Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. J. Geophys. Res., 115, D00H28, doi:10.1029/2009JD012277.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2011a: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2011b: Detection of atmospheric changes in spatially and temporally averaged infrared spectra observed from space. J. Climate, 24, 63926407.

    • Search Google Scholar
    • Export Citation
  • Kato, S., , N. G. Loeb, , D. A. Rutan, , F. G. Rose, , S. Sun-Mack, , W. F. Miller, , and Y. Chen, 2012: Uncertainty estimate of surface irradiances computed with MODIS-, CALIPSO-, and CloudSat-derived cloud and aerosol properties. Surv. Geophys., 33, 395412, doi:10.1007/s10712-012-9179-x.

    • Search Google Scholar
    • Export Citation
  • Kim, D., , and V. Ramanathan, 2008: Solar radiation budget and radiative forcing due to aerosols and clouds. J. Geophys. Res., 113, D02203, doi:10.1029/2007JD008434.

    • Search Google Scholar
    • Export Citation
  • Kratz, D., , S. K. Gupta, , A. C. Wilber, , and V. E. Sothcott, 2010: Validation of the CERES edition 2B surface-only flux algorithms. J. Appl. Meteor. Climatol., 49, 164180.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., , N. B. Wood, , T. Haladay, , G. L. Stephens, , and P. W. Stackhouse Jr., 2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rate data set. J. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , S. Kato, , K. Loukachine, , and N. M. Smith, 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22, 338351.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , B. A. Wielicki, , D. R. Doelling, , G. L. Smith, , D. F. Keyes, , S. Kato, , N. Manalo-Smith, , and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , S. Kato, , W. Su, , T. Wong, , F. Rose, , D. R. Doelling, , and J. Norris, 2012a: Advances in understanding top-of-atmosphere radiation variability from satellite observations. Surv. Geophys., 33, 359385, doi:10.1007/s10712-012-9175-1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , J. M. Lyman, , G. C. Johnson, , R. P. Allan, , D. R. Doelling, , T. Wong, , B. J. Soden, , and G. L. Stephens, 2012b: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci., 5, 110113, doi:10.1038/ngeo1375.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean–Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 16914 240.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., , W. L. Smith Jr., , D. P. Garber, , J. K. Ayers, , and D. R. Doelling, 1994: Cloud properties derived from GOES-7 for spring 1994 ARM intensive observing period using version 1.0.0 of ARM satellite data analysis program. NASA Reference Publication 1366, 58 pp.

  • Minnis, P., and Coauthors, 2011: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, doi:10.1109/TGRS.2011.2144601.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., , C. A. Wilson, , and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113, 293322.

    • Search Google Scholar
    • Export Citation
  • Newman, S. M., , J. A. Smith, , M. D. Glew, , S. M. Rogers, , and J. P. Taylor, 2005: Temperature and salinity dependence of sea surface emissivity in the thermal infrared. Quart. J. Roy. Meteor. Soc., 131, 25392557.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., , and I. Laszlo, 1992: Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteor., 31, 194211.

    • Search Google Scholar
    • Export Citation
  • Pinker, R. T., and Coauthors, 2003: Surface radiation budget in support of the GEWEX continental-scale international project (GCIP) and GEWEX Americas prediction project (GAPP), including the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res.,108, 8804, doi:10.1029/2002JD003301.

  • Pitts, M. C., , L. R. Poole, , and L. W. Thomason, 2009: CALIPSO polar stratospheric cloud observations: Second-generation detection algorithm and composition discrimination. Atmos. Chem. Phys., 9, 75777589.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GOES-5 Data Assimilation System: Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Technical Report Series on Global Modeling and Data Assimilation, Vol. 27, NASA/TM-2008-105606, 97 pp.

  • Roesch, A., , M. Wild, , A. Ohmura, , E. G. Dutton, , C. N. Long, , and T. Zhang, 2010: Assessment of BSRN radiation records for the computation of monthly means. Atmos. Meas. Tech., 4, 339354, doi:10.5194/amt-4-339-2011.

    • Search Google Scholar
    • Export Citation
  • Rose, F., , D. A. Rutan, , T. P. Charlock, , G. L. Smith, , and S. Kato, 2013: An algorithm for the constraining of radiative transfer calculations to CERES observed broadband top of atmosphere irradiance. J. Atmos. Oceanic. Technol., in press.

  • Rossow, W. B., , and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220.

  • Rossow, W. B., , and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287.

  • Rutan, D., , F. Rose, , M. Roman, , N. Manalo-Smith, , C. Schaaf, , and T. Charlock, 2009: Development and assessment of broadband surface albedo from Clouds and the Earth’s Radiant Energy System clouds and radiation swath data product. J. Geophys. Res., 114, D08125, doi:10.1029/2008JD010669.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., , T. Nakajima, , M. Satoh, , and H.-S. Jang, 2010: Impact of different definitions of clear-sky flux on the determination of longwave cloud radiative forcing: NICAM simulation results. Atmos. Chem. Phys.,10, 11 641–11 646, doi:10.5194/acp-10-11641-2010.

  • Stackhouse, P. W., Jr., , S. K. Gupta, , S. J. Cox, , T. Zhang, , J. C. Mikovitz, , and L. M. Hinkelman, 2011: The NASA/GEWEX surface radiation budget release 3.0: 24.5-year dataset. GEWEX News, No. 21 (1), International GEWEX Project Office, Silver Spring, MD, 10–12.

  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273.

  • Stephens, G. L., , and T. D. Ellis, 2008: Controls of global mean precipitation increases in global warming GCM experiments. J. Climate, 21, 61416155.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.

    • Search Google Scholar
    • Export Citation
  • Stuhlmann, R., , and G. L. Smith, 1988: A study of cloud-generated radiative heating and its generation of available potential energy. Part II: Results for a climatological zonal mean January. J. Atmos. Sci., 45, 39283943.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., , B. R. Barkstrom, , E. F. Harrison, , R. B. Lee III, , G. L. Smith, , and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system. Bull. Amer. Meteor. Soc., 72, 853868.

    • Search Google Scholar
    • Export Citation
  • Wilber, A. C., , D. P. Kratz, , and S. K. Gupta, 1999: Surface emissivity maps for use in satellite retrievals of longwave radiation. NASA Tech. Memo. TP-1999-209362, 30 pp.

  • Winker, D. M., and Coauthors, 2010: The CALIPSO Mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , and W. L. Smith, 1997: Emissivity of rough sea surface for 8–13 μm: Modeling and verification. Appl. Opt., 36, 26092619.

  • Yang, S.-K., , S. Zhou, , and A. J. Miller, cited 2000: SMOBA: A 3-D daily ozone analysis using SBUV/2 and TOVS measurements. [Available online at http://www.cpc.ncep.noaa.gov/products/stratosphere/SMOBA/smoba_doc.shtml.]

  • Zhang, Y.-C., , and W. B. Rossow, 1997: Estimating meridional energy transports by the atmospheric and oceanic general circulations using boundary fluxes. J. Climate, 10, 23582373.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., , W. B. Rossow, , and A. A. Lacis, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 1. Method and sensitivity to input data uncertainties. J. Geophys. Res., 100, 11491165.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., , W. B. Rossow, , A. A. Lacis, , V. Oinas, , and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., , W. B. Rossow, , and P. W. Stackhouse Jr., 2006: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the surface. J. Geophys. Res., 112, D01102, doi:10.1029/2005JD007008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 246 246 37
PDF Downloads 144 144 27

Surface Irradiances Consistent with CERES-Derived Top-of-Atmosphere Shortwave and Longwave Irradiances

View More View Less
  • 1 NASA Langley Research Center, Hampton, Virginia
  • | 2 Science System & Applications Inc., Hampton, Virginia
  • | 3 NASA Langley Research Center, Hampton, Virginia
  • | 4 Science System & Applications Inc., Lanham, Maryland
  • | 5 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
© Get Permissions
Restricted access

Abstract

The estimate of surface irradiance on a global scale is possible through radiative transfer calculations using satellite-retrieved surface, cloud, and aerosol properties as input. Computed top-of-atmosphere (TOA) irradiances, however, do not necessarily agree with observation-based values, for example, from the Clouds and the Earth’s Radiant Energy System (CERES). This paper presents a method to determine surface irradiances using observational constraints of TOA irradiance from CERES. A Lagrange multiplier procedure is used to objectively adjust inputs based on their uncertainties such that the computed TOA irradiance is consistent with CERES-derived irradiance to within the uncertainty. These input adjustments are then used to determine surface irradiance adjustments. Observations by the Atmospheric Infrared Sounder (AIRS), Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) that are a part of the NASA A-Train constellation provide the uncertainty estimates. A comparison with surface observations from a number of sites shows that the bias [root-mean-square (RMS) difference] between computed and observed monthly mean irradiances calculated with 10 years of data is 4.7 (13.3) W m−2 for downward shortwave and −2.5 (7.1) W m−2 for downward longwave irradiances over ocean and −1.7 (7.8) W m−2 for downward shortwave and −1.0 (7.6) W m−2 for downward longwave irradiances over land. The bias and RMS error for the downward longwave and shortwave irradiances over ocean are decreased from those without constraint. Similarly, the bias and RMS error for downward longwave over land improves, although the constraint does not improve downward shortwave over land. This study demonstrates how synergetic use of multiple instruments (CERES, MODIS, CALIPSO, CloudSat, AIRS, and geostationary satellites) improves the accuracy of surface irradiance computations.

Corresponding author address: Seiji Kato, Mail Stop 420, NASA Langley Research Center, Hampton, VA 23681-2199. E-mail: seiji.kato@nasa.gov

Abstract

The estimate of surface irradiance on a global scale is possible through radiative transfer calculations using satellite-retrieved surface, cloud, and aerosol properties as input. Computed top-of-atmosphere (TOA) irradiances, however, do not necessarily agree with observation-based values, for example, from the Clouds and the Earth’s Radiant Energy System (CERES). This paper presents a method to determine surface irradiances using observational constraints of TOA irradiance from CERES. A Lagrange multiplier procedure is used to objectively adjust inputs based on their uncertainties such that the computed TOA irradiance is consistent with CERES-derived irradiance to within the uncertainty. These input adjustments are then used to determine surface irradiance adjustments. Observations by the Atmospheric Infrared Sounder (AIRS), Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) that are a part of the NASA A-Train constellation provide the uncertainty estimates. A comparison with surface observations from a number of sites shows that the bias [root-mean-square (RMS) difference] between computed and observed monthly mean irradiances calculated with 10 years of data is 4.7 (13.3) W m−2 for downward shortwave and −2.5 (7.1) W m−2 for downward longwave irradiances over ocean and −1.7 (7.8) W m−2 for downward shortwave and −1.0 (7.6) W m−2 for downward longwave irradiances over land. The bias and RMS error for the downward longwave and shortwave irradiances over ocean are decreased from those without constraint. Similarly, the bias and RMS error for downward longwave over land improves, although the constraint does not improve downward shortwave over land. This study demonstrates how synergetic use of multiple instruments (CERES, MODIS, CALIPSO, CloudSat, AIRS, and geostationary satellites) improves the accuracy of surface irradiance computations.

Corresponding author address: Seiji Kato, Mail Stop 420, NASA Langley Research Center, Hampton, VA 23681-2199. E-mail: seiji.kato@nasa.gov
Save