Contribution of Tropical Cyclones to Global Very Deep Convection

Haiyan Jiang Department of Earth and Environment, Florida International University, Miami, Florida

Search for other papers by Haiyan Jiang in
Current site
Google Scholar
PubMed
Close
and
Cheng Tao Department of Earth and Environment, Florida International University, Miami, Florida

Search for other papers by Cheng Tao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Based on the 12-yr (1998–2009) Tropical Rainfall Measuring Mission (TRMM) precipitation feature (PF) database, both radar and infrared (IR) observations from TRMM are used to quantify the contribution of tropical cyclones (TCs) to very deep convection (VDC) in the tropics and to compare TRMM-derived properties of VDC in TCs and non-TCs. Using a radar-based definition, it is found that the contribution of TCs to total VDC in the tropics is not much higher than the contribution of TCs to total PFs. However, the area-based contribution of TCs to overshooting convection defined by IR is 13.3%, which is much higher than the 3.2% contribution of TCs to total PFs. This helps explain the contradictory results between previous radar-based and IR-based studies and indicates that TCs only contribute disproportionately large amount of overshooting convection containing mainly small ice particles that are barely detected by the TRMM radar. VDC in non-TCs over land has the highest maximum 30- and 40-dBZ height and the strongest ice-scattering signature derived from microwave 85- and 37-GHz observations, while VDC in TCs has the coldest minimum IR brightness temperature and largest overshooting distance and area. This suggests that convection is much more intense in non-TCs over land but is much deeper or colder in TCs. It is found that VDC in TCs usually has smaller environmental shear but larger total precipitable water and convective available potential energy than those in non-TCs. These findings offer evidence that TCs may contribute disproportionately to troposphere-to-stratosphere heat and moisture exchange.

Corresponding author address: Dr. Haiyan Jiang, Department of Earth and Environment, Florida International University, 11200 SW 8th St., PC-342B, Miami, FL 33199. E-mail: haiyan.jiang@fiu.edu

Abstract

Based on the 12-yr (1998–2009) Tropical Rainfall Measuring Mission (TRMM) precipitation feature (PF) database, both radar and infrared (IR) observations from TRMM are used to quantify the contribution of tropical cyclones (TCs) to very deep convection (VDC) in the tropics and to compare TRMM-derived properties of VDC in TCs and non-TCs. Using a radar-based definition, it is found that the contribution of TCs to total VDC in the tropics is not much higher than the contribution of TCs to total PFs. However, the area-based contribution of TCs to overshooting convection defined by IR is 13.3%, which is much higher than the 3.2% contribution of TCs to total PFs. This helps explain the contradictory results between previous radar-based and IR-based studies and indicates that TCs only contribute disproportionately large amount of overshooting convection containing mainly small ice particles that are barely detected by the TRMM radar. VDC in non-TCs over land has the highest maximum 30- and 40-dBZ height and the strongest ice-scattering signature derived from microwave 85- and 37-GHz observations, while VDC in TCs has the coldest minimum IR brightness temperature and largest overshooting distance and area. This suggests that convection is much more intense in non-TCs over land but is much deeper or colder in TCs. It is found that VDC in TCs usually has smaller environmental shear but larger total precipitable water and convective available potential energy than those in non-TCs. These findings offer evidence that TCs may contribute disproportionately to troposphere-to-stratosphere heat and moisture exchange.

Corresponding author address: Dr. Haiyan Jiang, Department of Earth and Environment, Florida International University, 11200 SW 8th St., PC-342B, Miami, FL 33199. E-mail: haiyan.jiang@fiu.edu
Save
  • Alcala, C. M., and A. E. Dessler, 2002: Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. J. Geophys. Res., 107, 4792, doi:10.1029/2002JD002457.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., R. W. Burpee, and F. D. Marks Jr., 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocity. J. Atmos. Sci., 53, 18871909, doi:10.1175/1520-0469(1996)053<1887:VMCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cairo, F., and Coauthors, 2008: Morphology of the tropopause layer and lower stratosphere above a tropical cyclone: A case study on cyclone Davina (1999). Atmos. Chem. Phys., 8, 34113426, doi:10.5194/acp-8-3411-2008.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 26872710, doi:10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., andE. J. Zipser, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev., 130, 785801, doi:10.1175/1520-0493(2002)130<0785:RISALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rec., 130, 769784, doi:10.1175/1520-0493(2002)130<0769:RISALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, doi:10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., 2002: The effect of deep, tropical convection on the tropical tropopause layer. J. Geophys. Res., 107, 4033, doi:10.1029/2001JD000511.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and G. J. Holland, 1992: Observations of record cold cloud-top temperatures in Tropical Cyclone Hilda (1990). Mon. Wea. Rev., 120, 22402251, doi:10.1175/1520-0493(1992)120<2240:OORCCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., 1976: The structure and energetics of the tropical cyclone. Colorado State University Department of Atmospheric Science Paper 258, 180 pp.

  • Hence, D. A., and R. A. Houze, 2011: Vertical structure of hurricane eyewalls as seen by the TRMM precipitation radar. J. Atmos. Sci., 68, 16371652, doi:10.1175/2011JAS3578.1.

    • Search Google Scholar
    • Export Citation
  • Hence, D. A., and R. A. Houze, 2012a: Vertical structure of tropical cyclones with concentric eyewalls as seen by the TRMM precipitation radar. J. Atmos. Sci., 69, 10211036, doi:10.1175/JAS-D-11-0119.1.

    • Search Google Scholar
    • Export Citation
  • Hence, D. A., and R. A. Houze, 2012b: Vertical structure of tropical cyclone rainbands as seen by the TRMM precipitation radar. J. Atmos. Sci., 69, 26442661, doi:10.1175/JAS-D-11-0323.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., L. Tian, A. J. Heymsfield, L. Li, and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308, doi:10.1175/2009JAS3132.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439, doi:10.1029/95RG02097.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. I. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic basin, 1886– 1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC 22, 24 pp. [Available online at http://www.nhc.noaa.gov/pdf/NWS-NHC-1988-22.pdf.]

  • Jiang, H., and E. J. Zipser, 2010: Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Climate, 23, 15261543, doi:10.1175/2009JCLI3303.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., C. Liu, and E. J. Zipser, 2011: A TRMM-based tropical cyclone cloud and precipitation feature database. J. Appl. Meteor. Climatol., 50, 12551274, doi:10.1175/2011JAMC2662.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., E. M. Ramirez, and D. J. Cecil, 2013: Convective and rainfall properties of tropical cyclone inner cores and rainbands from 11 years of TRMM data. Mon. Wea. Rev., 141, 431450, doi:10.1175/MWR-D-11-00360.1.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., , and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46, 621640, doi:10.1175/1520-0469(1989)046<0621:VVCOOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting,25, 220–241, doi:10.1175/2009WAF2222280.1.

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110, D23104, doi:10.1029/2005JD006063.

    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, and S. W. Nesbitt, 2007: Global distribution of tropical deep convection: Different perspectives form TRMM infrared and radar data. J. Climate, 20, 489503, doi:10.1175/JCLI4023.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: University of Utah TRMM cloud and precipitation feature database. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., F. D. Marks, and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A global perspective. Mon. Wea. Rev., 132, 16451660, doi:10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev.,124, 2417–2437, doi:10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2.

  • Molinari, J., D. M. Romps, D. Vollaro, and L. Nguyen, 2012: CAPE in tropical cyclones. J. Atmos. Sci., 69, 24522463, doi:10.1175/JAS-D-11-0254.1.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106, doi:10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., and S. Gould-Stewart, 1981: A stratospheric fountain? J. Atmos. Sci., 38, 27892796, doi:10.1175/1520-0469(1981)038<2789:ASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., and J. Molinari, 2012: Rapid intensification of a sheared, fast-moving hurricane over the Gulf Stream. Mon. Wea. Rev., 140, 33613378, doi:10.1175/MWR-D-11-00293.1.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503538.

  • Romps, D. M., and Z. M. Kuang, 2009: Overshooting convection in tropical cyclones. Geophys. Res. Lett., 36, L09804, doi:10.1029/2009GL037396.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S., and A. Dessler, 2001: A model for transport across the tropical tropopause. J. Atmos. Sci., 58, 765779, doi:10.1175/1520-0469(2001)058<0765:AMFTAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter , No. 110, ECMWF, Reading, United Kingdom, 26–35.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., 1990: Global circulation and tropical cloud activity. Proc. Int. Symp. on Aqua and Planet, Tokyo, Japan, Tokai University, 7790.

  • Spencer, R. W., H. G. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, doi:10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Szoke, E. J., E. J. Zipser, and D. P. Jorgensen, 1986: A radar study of convective cells in mesoscale systems in GATE. Part I: Vertical profile statistics and comparison with hurricanes. J. Atmos. Sci., 43, 182198, doi:10.1175/1520-0469(1986)043<0182:ARSOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, C., and H. Jiang, 2013: Global distribution of hot towers in tropical cyclones based on 11-yr TRMM Data. J. Climate, 26, 13711386, doi:10.1175/JCLI-D-12-00291.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 531 339 82
PDF Downloads 181 64 2