Ensemble-Based Parameter Estimation in a Coupled GCM Using the Adaptive Spatial Average Method

Y. Liu Center for Climate Research and Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Y. Liu in
Current site
Google Scholar
PubMed
Close
,
Z. Liu Laboratory for Ocean–Atmosphere Studies, Peking University, Beijing, China, and Center for Climate Research and Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Z. Liu in
Current site
Google Scholar
PubMed
Close
,
S. Zhang GFDL/NOAA, Princeton University, Princeton, New Jersey

Search for other papers by S. Zhang in
Current site
Google Scholar
PubMed
Close
,
X. Rong Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by X. Rong in
Current site
Google Scholar
PubMed
Close
,
R. Jacob ** Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, Illinois

Search for other papers by R. Jacob in
Current site
Google Scholar
PubMed
Close
,
S. Wu Center for Climate Research and Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by S. Wu in
Current site
Google Scholar
PubMed
Close
, and
F. Lu Center for Climate Research and Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by F. Lu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ensemble-based parameter estimation for a climate model is emerging as an important topic in climate research. For a complex system such as a coupled ocean–atmosphere general circulation model, the sensitivity and response of a model variable to a model parameter could vary spatially and temporally. Here, an adaptive spatial average (ASA) algorithm is proposed to increase the efficiency of parameter estimation. Refined from a previous spatial average method, the ASA uses the ensemble spread as the criterion for selecting “good” values from the spatially varying posterior estimated parameter values; these good values are then averaged to give the final global uniform posterior parameter. In comparison with existing methods, the ASA parameter estimation has a superior performance: faster convergence and enhanced signal-to-noise ratio.

Center for Climate Research Contribution Number 1168.

Corresponding author address: Yun Liu, Center for Climate Research and Dept. Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, WI 53706. E-mail: liu6@wisc.edu

Abstract

Ensemble-based parameter estimation for a climate model is emerging as an important topic in climate research. For a complex system such as a coupled ocean–atmosphere general circulation model, the sensitivity and response of a model variable to a model parameter could vary spatially and temporally. Here, an adaptive spatial average (ASA) algorithm is proposed to increase the efficiency of parameter estimation. Refined from a previous spatial average method, the ASA uses the ensemble spread as the criterion for selecting “good” values from the spatially varying posterior estimated parameter values; these good values are then averaged to give the final global uniform posterior parameter. In comparison with existing methods, the ASA parameter estimation has a superior performance: faster convergence and enhanced signal-to-noise ratio.

Center for Climate Research Contribution Number 1168.

Corresponding author address: Yun Liu, Center for Climate Research and Dept. Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, WI 53706. E-mail: liu6@wisc.edu
Save
  • Aksoy, A., F. Zhang, and J. W. Nielsen-Gammon, 2006a: Ensemble-based simultaneous state and parameter estimation with MM5. Geophys. Res. Lett., 33, L12801, doi:10.1029/2006GL026186.

    • Search Google Scholar
    • Export Citation
  • Aksoy, A., F. Zhang, and J. W. Nielsen-Gammon, 2006b: Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model. Mon. Wea. Rev., 134, 29512970, doi:10.1175/MWR3224.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642, doi:10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 59A, 210224, doi:10.1111/j.1600-0870.2006.00216.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, doi:10.1111/j.1600-0870.2008.00361.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, W. G., A. Gnanadesikan, R. Hallberg, J. Dunne, and B. L. Samuels, 2007: Impact of ocean color on the maintenance of the Pacific cold tongue. Geophys. Res. Lett., 34, L11609, doi:10.1029/2007GL030100.

    • Search Google Scholar
    • Export Citation
  • Annan, J. D., and J. C. Hargreaves, 2004: Efficient parameter estimation for a highly chaotic system. Tellus, 56A, 520526, doi:10.1111/j.1600-0870.2004.00073.x.

    • Search Google Scholar
    • Export Citation
  • Annan, J. D., J. C. Hargreaves, N. R. Edwards, and R. Marsh, 2005a: Parameter estimation in an intermediate complexity Earth system model using an ensemble Kalman filter. Ocean Modell., 8, 135154, doi:10.1016/j.ocemod.2003.12.004.

    • Search Google Scholar
    • Export Citation
  • Annan, J. D., D. J. Lunt, J. C. Hargreaves, and P. J. Valdes, 2005b: Parameter estimation in an atmospheric GCM using the ensemble Kalman filter. Nonlinear Processes Geophys., 12, 363371, doi:10.5194/npg-12-363-2005.

    • Search Google Scholar
    • Export Citation
  • Ballabrera-Poy, J., R. Murtugudde, R. H. Zhang, and A. J. Busalacchi, 2007: Coupled ocean–atmosphere response to seasonal modulation of ocean color: Impact on interannual climate experiments in the tropical Pacific. J. Climate, 20, 353374, doi:10.1175/JCLI3958.1.

    • Search Google Scholar
    • Export Citation
  • Banks, H. T., Ed., 1992a: Control and Estimation in Distributed Parameter Systems. Frontiers in Applied Mathematics, Vol. 11, SIAM, 227 pp.

  • Banks, H. T., 1992b: Computational issues in parameter estimation and feedback control problems for partial differential equation systems. Physica D, 60, 226238, doi:10.1016/0167-2789(92)90239-J.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2007: Data Assimilation: The Ensemble Kalman Filter. Springer, 187 pp.

  • Frouin, R., D. W. Lingner, C. Gautier, K. S. Baker, and R. C. Smith, 1989: A simple analytical formula to compute clear sky total photosynthetically available solar irradiance at the ocean surface. J. Geophys. Res., 94, 97319742, doi:10.1029/JC094iC07p09731.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, doi:10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and C. Snyder, 2005: Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL. Mon. Wea. Rev., 133, 32603275, doi:10.1175/MWR3022.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2005: Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches. Mon. Wea. Rev., 133, 31323147, doi:10.1175/MWR3020.1.

    • Search Google Scholar
    • Export Citation
  • Hokanson, E. P., 2006: The effects of solar penetration on a coupled general circulation model. M.S. thesis, Dep. of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, 110 pp.

  • Hu, X.-M., F. Zhang, and J. W. Nielsen-Gammon, 2010: Ensemble-based simultaneous state and parameter estimation for treatment of mesoscale model error: A real-data study. Geophys. Res. Lett., 37, L08802, doi:10.1029/2010GL043017.

    • Search Google Scholar
    • Export Citation
  • Jacob, R., 1997: Low frequency variability in a simulated atmosphere–ocean system. Ph.D dissertation, University of Wisconsin–Madison, 155 pp.

  • Liu, Z., J. Kutzbach, and L. Wu, 2000: Modeling climatic shift of El Niño variability in the Holocene. Geophys. Res. Lett., 27, 22652268, doi:10.1029/2000GL011452.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., B. Otto-Bliesner, J. Kutzbach, L. Li, and C. Shields, 2003: Coupled climate simulations of the evolution of global monsoons in the Holocene. J. Climate, 16, 24722490, doi:10.1175/1520-0442(2003)016<2472:CCSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2007a: Simulating the transient evolution and abrupt change of Northern Africa atmosphere–ocean–terrestrial ecosystem in the Holocene. Quat. Sci. Rev., 26, 18181837, doi:10.1016/j.quascirev.2007.03.002.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., Y. Liu, L. Wu, and R. Jacob, 2007b: Seasonal and long-term atmospheric responses to reemerging North Pacific Ocean variability: A combined dynamical and statistical assessment. J. Climate, 20, 955980, doi:10.1175/JCLI4041.1.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., J. Beauchamp, C. R. McClain, M. Lewis, and A. Busalaccki, 2002: Effects of penetrative radiation on the upper tropical ocean circulation. J. Climate, 15, 470486, doi:10.1175/1520-0442(2002)015<0470:EOPROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamoto, S., S. Prasanna Kumar, J. M. Oberhuber, J. Ikshizaka, K. Muneyama, and R. Frouin, 2001: Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model. Geophys. Res. Lett., 28, 20212024, doi:10.1029/2000GL012494.

    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., X.-M. Hu, F. Zhang, and J. E. Pleim, 2010: Evaluation of planetary boundary layer scheme sensitivities for the purpose of parameter estimation. Mon. Wea. Rev., 138, 34003417, doi:10.1175/2010MWR3292.1.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., D. A. Siegel, and C. D. Mobley, 2000: Ocean radiant heating. Part I: Optical influences. J. Phys. Oceanogr., 30, 18331848, doi:10.1175/1520-0485(2000)030<1833:ORHPIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ridgwell, A., J. C. Hargreaves, N. R. Edwards, J. D. Annan, T. M. Lenton, R. Marsh, A. Yool, and A. Watson, 2007: Marine geochemical data assimilation in an efficient Earth system model of global biogeochemical cycling. Biogeosciences, 4, 87104, doi:10.5194/bg-4-87-2007.

    • Search Google Scholar
    • Export Citation
  • Schneider, E., and Z. Zhu, 1998: Sensitivity of the simulated annual cycle of sea surface temperature in the equatorial Pacific to sunlight penetration. J. Climate, 11, 19321950, doi:10.1175/1520-0442-11.8.1932.

    • Search Google Scholar
    • Export Citation
  • Smith, R. C., and K. S. Baker, 1978: The bio-optical state of ocean waters and remote sensing. Limnol. Oceanogr., 23, 247259, doi:10.4319/lo.1978.23.2.0247.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008a: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part I: Sensitivity analysis and parameter identifiability. Mon. Wea. Rev., 136, 16301648, doi:10.1175/2007MWR2070.1.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008b: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part II: Parameter estimation experiments. Mon. Wea. Rev., 136, 16491668, doi:10.1175/2007MWR2071.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Liu, R. Gallimore, R. Jacob, D. Lee, and Y. Zhong, 2003: Pacific decadal variability: The tropical Pacific mode and the North Pacific mode. J. Climate, 16, 11011120, doi:10.1175/1520-0442(2003)16<1101:PDVTTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, X., S. Zhang, Z. Liu, A. Rosati, T. Delworth, and Y. Liu, 2012: Impact of geographic dependent parameter optimization on climate estimation and prediction: Simulation with an intermediate coupled model. Mon. Wea. Rev., 140, 39563971, doi:10.1175/MWR-D-11-00298.1.

    • Search Google Scholar
    • Export Citation
  • Wu, X., S. Zhang, Z. Liu, A. Rosati, and T. Delworth, 2013: A study of impact of the geographic dependence of observing system on parameter estimation with an intermediate coupled model. Climate Dyn., 40, 1789–1798, doi:10.1007/s00382-012-1385-1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impact of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253, doi:10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., 2011a: Impact of observation-optimized model parameters on decadal predictions: Simulation with a simple pycnocline prediction model. Geophys. Res. Lett., 38, L02702, doi:10.1029/2010GL046133.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., 2011b: A study of impacts of coupled model initial shocks and state–parameter optimization on climate predictions using a simple pycnocline prediction model. J. Climate,24, 6210–6226, doi:10.1175/JCLI-D-10-05003.1.

  • Zhang, S., Z. Liu, A. Rosati, and T. Delworth, 2012: A study of enhancive parameter correction with coupled data assimilation for climate estimation and prediction using a simple coupled model. Tellus, 64A, 10963, doi:10.3402/tellusa.v64i0.10963.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1124 496 106
PDF Downloads 235 58 4