Trends in Extreme U.S. Temperatures

Jaechoul Lee Department of Mathematics, Boise State University, Boise, Idaho

Search for other papers by Jaechoul Lee in
Current site
Google Scholar
PubMed
Close
,
Shanghong Li Department of Mathematical Sciences, Clemson University, Clemson, South Carolina

Search for other papers by Shanghong Li in
Current site
Google Scholar
PubMed
Close
, and
Robert Lund Department of Mathematical Sciences, Clemson University, Clemson, South Carolina

Search for other papers by Robert Lund in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper develops trend estimation techniques for monthly maximum and minimum temperature time series observed in the 48 conterminous United States over the last century. While most scientists concur that this region has warmed on aggregate, there is no a priori reason to believe that temporal trends in extremes and averages will exhibit the same patterns. Indeed, under minor regularity conditions, the sample partial sum and maximum of stationary time series are asymptotically independent (statistically). Previous authors have suggested that minimum temperatures are warming faster than maximum temperatures in the United States; such an aspect can be investigated via the methods discussed in this study. Here, statistical models with extreme value and changepoint features are used to estimate trends and their standard errors. A spatial smoothing is then done to extract general structure. The results show that monthly maximum temperatures are not often greatly changing—perhaps surprisingly, there are many stations that show some cooling. In contrast, the minimum temperatures show significant warming. Overall, the southeastern United States shows the least warming (even some cooling), and the western United States, northern Midwest, and New England have experienced the most warming.

Corresponding author address: Jaechoul Lee, Department of Mathematics, Boise State University, 1910 University Dr., Boise, ID 83725. E-mail: jaechlee@math.boisestate.edu

Abstract

This paper develops trend estimation techniques for monthly maximum and minimum temperature time series observed in the 48 conterminous United States over the last century. While most scientists concur that this region has warmed on aggregate, there is no a priori reason to believe that temporal trends in extremes and averages will exhibit the same patterns. Indeed, under minor regularity conditions, the sample partial sum and maximum of stationary time series are asymptotically independent (statistically). Previous authors have suggested that minimum temperatures are warming faster than maximum temperatures in the United States; such an aspect can be investigated via the methods discussed in this study. Here, statistical models with extreme value and changepoint features are used to estimate trends and their standard errors. A spatial smoothing is then done to extract general structure. The results show that monthly maximum temperatures are not often greatly changing—perhaps surprisingly, there are many stations that show some cooling. In contrast, the minimum temperatures show significant warming. Overall, the southeastern United States shows the least warming (even some cooling), and the western United States, northern Midwest, and New England have experienced the most warming.

Corresponding author address: Jaechoul Lee, Department of Mathematics, Boise State University, 1910 University Dr., Boise, ID 83725. E-mail: jaechlee@math.boisestate.edu
Save
  • Bloomfield, P., and D. Nychka, 1992: Climate spectra and detecting climate change. Climatic Change, 21, 275287, doi:10.1007/BF00139727.

    • Search Google Scholar
    • Export Citation
  • Brockwell, P. J., and R. A. Davis, 1991: Time Series: Theory and Methods. 2nd ed. Springer, 579 pp.

  • Burt, C. C., 2004: Extreme Weather: A Guide and Record Book. W. W. Norton, 304 pp.

  • Coles, S., 2001: An Introduction to Statistical Modelling of Extreme Values. Springer, 208 pp.

  • Davis, R. A., T. C. M. Lee, and G. A. Rodriguez-Yam, 2006: Structural break estimation for nonstationary time series models. J. Amer. Stat. Assoc., 101, 223239, doi:10.1198/016214505000000745.

    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., and R. J. Allen, 2002: Trends in twentieth-century temperature extremes across the United States. J. Climate, 15, 31883205, doi:10.1175/1520-0442(2002)015<3188:TITCTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., R. J. Allen, and K. P. Gallo, 2002: A homogenized historical extreme dataset for the United States. J. Atmos. Oceanic Technol., 19, 12671284, doi:10.1175/1520-0426(2002)019<1267:AHHTED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • El Fadli, K. I., and Coauthors, 2013: World meteorological organization assessment of the purported world record 58°C temperature extreme at El Azizia, Libya (13 September 1922). Bull. Amer. Meteor. Soc., 94, 199204, doi:10.1175/BAMS-D-12-00093.1.

    • Search Google Scholar
    • Export Citation
  • Fomby, T. B., and T. J. Vogelsang, 2002: The application of size-robust trend statistics to global-warming temperature series. J. Climate, 15, 117123, doi:10.1175/1520-0442(2002)015<0117:TAOSRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gallagher, C., R. B. Lund, and M. Robbins, 2013: Changepoint detection in climate series with long-term trends. J. Climate, 26, 49945006, doi:10.1175/JCLI-D-12-00704.1.

    • Search Google Scholar
    • Export Citation
  • Gumbel, E. J., 1958: Statistics of Extremes. Columbia University Press, 375 pp.

  • Hansen, K. M., 1991: Head-banging: Robust smoothing in the plane. IEEE Trans. Geosci. Remote Sens., 29, 369378, doi:10.1109/36.79427.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., 1988: Hemispheric surface air temperature variations: Recent trends and an update to 1987. J. Climate, 1, 654660, doi:10.1175/1520-0442(1988)001<0654:HSATVR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., M. New, D. E. Parker, S. Martin, and I. G. Rigor, 1999: Surface air temperature and its changes over the past 150 years. Rev. Geophys., 37, 173199, doi:10.1029/1999RG900002.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., G. Kukla, V. N. Razuvayev, M. J. Changery, R. G. Quayle, R. R. Heim Jr., D. R. Easterling, and C. B. Fu, 1991: Global warming: Evidence for asymmetric diurnal temperature change. Geophys. Res. Lett., 18, 22532256, doi:10.1029/91GL02900.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and B. G. Brown, 1992: Extreme events in a changing climate: Variability is more important than means. Climatic Change, 21, 289302, doi:10.1007/BF00139728.

    • Search Google Scholar
    • Export Citation
  • Koenker, R., 2005: Quantile Regression. Cambridge University Press, 349 pp.

  • Kunkel, K. E., X.-Z. Liang, J. Zhu, and Y. Lin, 2006: Can CGCMs simulate the twentieth-century “warming hole” in the central United States? J. Climate, 19, 41374153, doi:10.1175/JCLI3848.1.

    • Search Google Scholar
    • Export Citation
  • Lawrimore, J. H., M. J. Menne, B. E. Gleason, C. N. Williams, D. B. Wuertz, R. S. Vose, and J. Rennie, 2011: An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J. Geophys. Res.,116, D19121, doi:10.1029/2011JD016187.

  • Leadbetter, M. R., G. Lindgren, and H. Rootzén, 1983: Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, 336 pp.

    • Search Google Scholar
    • Export Citation
  • Li, S., and R. B. Lund, 2012: Multiple changepoint detection via genetic algorithms. J. Climate, 25, 674686, doi:10.1175/2011JCLI4055.1.

    • Search Google Scholar
    • Export Citation
  • Lu, Q., and R. B. Lund, 2007: Simple linear regression with multiple level shifts. Can. J. Stat., 35, 447458, doi:10.1002/cjs.5550350308.

    • Search Google Scholar
    • Export Citation
  • Lu, Q., R. B. Lund, and P. L. Seymour, 2005: An update of U.S. temperature trends. J. Climate, 18, 49064914, doi:10.1175/JCLI3557.1.

  • Lu, Q., R. B. Lund, and T. C. M. Lee, 2010: An MDL approach to the climate segmentation problem. Ann. Appl. Stat., 4, 299319, doi:10.1214/09-AOAS289.

    • Search Google Scholar
    • Export Citation
  • Lund, R. B., H. Hurd, P. Bloomfield, and R. L. Smith, 1995: Climatological time series with periodic correlation. J. Climate, 8, 27872809, doi:10.1175/1520-0442(1995)008<2787:CTSWPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lund, R. B., P. L. Seymour, and K. Kafadar, 2001: Temperature trends in the United States. Environmetrics, 12, 673690, doi:10.1002/env.468.

    • Search Google Scholar
    • Export Citation
  • Lund, R. B., X. L. Wang, Q. Lu, J. Reeves, C. Gallagher, and Y. Feng, 2007: Changepoint detection in periodic and autocorrelated time series. J. Climate, 20, 51785190, doi:10.1175/JCLI4291.1.

    • Search Google Scholar
    • Export Citation
  • McCormick, W., and Y. Qi, 2000: Asymptotic distribution for the sum and maximum of Gaussian processes. J. Appl. Prob., 37, 958971.

  • Meehl, G. A., J. M. Arblaster, and G. Branstator, 2012: Mechanisms contributing to the warming hole and the consequent U.S. east–west differential of heat extremes. J. Climate, 25, 63946408, doi:10.1175/JCLI-D-11-00655.1.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and C. N. Williams Jr., 2005: Detection of undocumented changepoints using multiple test statistics and composite reference series. J. Climate, 18, 42714286, doi:10.1175/JCLI3524.1.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and C. N. Williams Jr., 2009: Homogenization of temperature series via pairwise comparisons. J. Climate, 22, 17001717, doi:10.1175/2008JCLI2263.1.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., C. N. Williams Jr., and R. S. Vose, 2009: The U.S. Historical Climatology Network monthly temperature data, version 2. Bull. Amer. Meteor. Soc., 90, 9931007, doi:10.1175/2008BAMS2613.1.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., C. N. Williams Jr., and M. A. Palecki, 2010: On the reliability of the U.S. surface temperature record. J. Geophys. Res.,115, D11108, doi:10.1029/2009JD013094.

  • Mitchell, J. M., Jr., 1953: On the causes of instrumentally observed secular temperature trends. J. Meteor., 10, 244261, doi:10.1175/1520-0469(1953)010<0244:OTCOIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., X. Zhang, M. Brunet-India, and J. L. Vázquez-Aguirre, 2008: Changes in North American extremes derived from daily weather data. J. Geophys. Res.,113, D07113, doi:10.1029/2007JD009453.

  • Reiss, R. D., and M. Thomas, 2007: Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields. 3rd ed. Springer, 530 pp.

  • Robinson, W. A., R. Reudy, and J. E. Hansen, 2002: General circulation model simulations of recent cooling in the east-central United States. J. Geophys. Res., 107, 4748, doi:10.1029/2001JD001577.

    • Search Google Scholar
    • Export Citation
  • Smith, R. L., 1989: Extreme value analysis of environmental time series: An application to trend detection in ground-level ozone. Stat. Sci., 4, 367377, doi:10.1214/ss/1177012400.

    • Search Google Scholar
    • Export Citation
  • Van de Vyver, H., 2012: Evolution of extreme temperatures in Belgium since the 1950s. Theor. Appl. Climatol., 107, 113129, doi:10.1007/s00704-011-0456-2.

    • Search Google Scholar
    • Export Citation
  • Vose, R. S., D. R. Easterling, and B. Gleason, 2005: Maximum and minimum temperature trends for the globe: An update through 2004. Geophys. Res. Lett., 32, L23822, doi:10.1029/2005GL024379.

    • Search Google Scholar
    • Export Citation
  • Wendland, W. M., and W. Armstrong, 1993: Comparison of maximum–minimum resistance and liquid-in-glass thermometer records. J. Atmos. Oceanic Technol., 10, 233237, doi:10.1175/1520-0426(1993)010<0233:COMRAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, C. N., M. J. Menne, and P. W. Thorne, 2012: Benchmarking the performance of pairwise homogenization of surface temperatures in the United States. J. Geophys. Res.,117, D05116, doi:10.1029/2011JD016761.

  • Zhang, J., W. Zheng, and M. J. Menne, 2012: A Bayes factor model for detecting artificial discontinuities via pairwise comparisons. J. Climate, 25, 84628474.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 512 158 16
PDF Downloads 320 103 13