Changes in Cyclone Characteristics in Response to Modified SSTs

L. S. Graff Meteorology and Oceanography Section, Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by L. S. Graff in
Current site
Google Scholar
PubMed
Close
and
J. H. LaCasce Meteorology and Oceanography Section, Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by J. H. LaCasce in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of changes in sea surface temperature (SST) on the statistics of extratropical cyclones is investigated. The cyclones were identified in an atmospheric general circulation model (AGCM) using an objective Lagrangian tracking algorithm, applied to the 850-hPa relative vorticity. The statistics were generated for several 20-yr simulations, in which the SSTs were warmed or cooled by 2 K in latitudinal bands. The response was studied in both hemispheres, during summer and winter.

Changes in the position of the storm tracks are largely consistent with those seen in previous studies. Increasing SSTs uniformly or increasing the midlatitude SST gradient results in a poleward shift in the storm tracks, with the clearest trends seen in the Southern Hemisphere (SH). Here it is demonstrated that the SST modifications alter the cyclone characteristics as well. When the warming includes the low latitudes and/or the midlatitude gradient is increased, there are more short-lived cyclones. These are also on average more intense and translate faster, both poleward and eastward.

The poleward displacement is correlated with cyclone intensity, so that stronger cyclones translate to higher latitudes. This is suggestive of vortex self-advection in the presence of a mean potential vorticity (PV) gradient. The increased eastward translation is correlated with the depth-averaged zonal velocity, and so is likely related to an increase in the steering-level velocity. These changes in cyclone translation probably contribute to the changes in the storm tracks seen previously.

Corresponding author address: Lise Seland Graff, Meteorology and Oceanography Section, Department of Geosciences, University of Oslo, P.O. Box 1022, Blindern, N-0315 Oslo, Norway. E-mail: l.s.graff@geo.uio.no

Abstract

The impact of changes in sea surface temperature (SST) on the statistics of extratropical cyclones is investigated. The cyclones were identified in an atmospheric general circulation model (AGCM) using an objective Lagrangian tracking algorithm, applied to the 850-hPa relative vorticity. The statistics were generated for several 20-yr simulations, in which the SSTs were warmed or cooled by 2 K in latitudinal bands. The response was studied in both hemispheres, during summer and winter.

Changes in the position of the storm tracks are largely consistent with those seen in previous studies. Increasing SSTs uniformly or increasing the midlatitude SST gradient results in a poleward shift in the storm tracks, with the clearest trends seen in the Southern Hemisphere (SH). Here it is demonstrated that the SST modifications alter the cyclone characteristics as well. When the warming includes the low latitudes and/or the midlatitude gradient is increased, there are more short-lived cyclones. These are also on average more intense and translate faster, both poleward and eastward.

The poleward displacement is correlated with cyclone intensity, so that stronger cyclones translate to higher latitudes. This is suggestive of vortex self-advection in the presence of a mean potential vorticity (PV) gradient. The increased eastward translation is correlated with the depth-averaged zonal velocity, and so is likely related to an increase in the steering-level velocity. These changes in cyclone translation probably contribute to the changes in the storm tracks seen previously.

Corresponding author address: Lise Seland Graff, Meteorology and Oceanography Section, Department of Geosciences, University of Oslo, P.O. Box 1022, Blindern, N-0315 Oslo, Norway. E-mail: l.s.graff@geo.uio.no
Save
  • Adem, J., 1956: A series solution for the barotropic vorticity equation and its application in the study of atmospheric vortices. Tellus, 8, 364372, doi:10.1111/j.2153-3490.1956.tb01234.x.

    • Search Google Scholar
    • Export Citation
  • Bader, J., M. D. Mesquita, K. I. Hodges, N. Keenlyside, S. Osterhus, and M. Miles, 2011: A review on Northern Hemisphere sea-ice, storminess and the North Atlantic oscillation: Observations and projected changes. Atmos. Res., 101, 809834, doi:10.1016/j.atmosres.2011.04.007.

    • Search Google Scholar
    • Export Citation
  • Bader, J., M. Flügge, N. Kvamstø, M. Mesquita, and A. Voigt, 2013: Atmospheric winter response to a projected future Antarctic sea-ice reduction: A dynamical analysis. Climate Dyn., 40, 27072718, doi:10.1007/s00382-012-1507-9.

    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., V. Ramanathan, and G. Tselioudis, 2012: Changes in the extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 20372053, doi:10.1007/s00382-011-1065-6.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, doi:10.1175/JCLI3815.1.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 22762301, doi:10.1175/2008JCLI2678.1.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N., and Coauthors, 2007: Observations: Oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 385–432.

  • Blackmon, M. L., 1976: A climatological spectral study of the 500-mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 16071623, doi:10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., J. M. Wallace, N.-C. Lau, and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34, 10401053, doi:10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860, doi:10.1175/2008JAS2657.1.

    • Search Google Scholar
    • Export Citation
  • Caballero, R. and P. L. Langen, 2005: The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys. Res. Lett.,32, L02705, doi:10.1029/2004GL021581.

  • Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2011: Northern Hemisphere extratropical cyclones in a warming climate in the HiGEM high-resolution climate model. J. Climate, 24, 53365352, doi:10.1175/2011JCLI4181.1.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and R. T. Williams, 1987: Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci., 44, 12571265, doi:10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2007: Assessing the increasing trend in Northern Hemisphere winter storm track activity using surface ship observations and a statistical storm track model. J. Climate, 20, 56075628, doi:10.1175/2007JCLI1596.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, doi:10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Lu, and D. M. W. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 59425959, doi:10.1175/2008JCLI2306.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., R. A. Plumb, and J. Lu, 2010: Sensitivities of zonal mean atmospheric circulation to SST warming in an aqua-planet model. Geophys. Res. Lett.,37, L12701, doi:10.1029/2010GL043473.

  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 214 pp, doi:10.5065/D63N21CH.

  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19, 21442161, doi:10.1175/JCLI3760.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., 2003: Extratropical Southern Hemisphere cyclones: Harbingers of climate change? J. Climate, 16, 28022805, doi:10.1175/1520-0442(2003)016<2802:ESHCHO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Graff, L. S., and J. H. LaCasce, 2012: Changes in the extratropical storm tracks in response to changes in SST in an AGCM. J. Climate, 25, 18541870, doi:10.1175/JCLI-D-11-00174.1.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 25732586, doi:10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 34583465, doi:10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1996: Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon. Wea. Rev., 124, 29142932, doi:10.1175/1520-0493(1996)124<2914:SNEATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 13621373, doi:10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, doi:10.1175/JCLI3570.1.

    • Search Google Scholar
    • Export Citation
  • Hotta, D., and H. Nakamura, 2011: On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks. J. Climate, 24, 33773401, doi:10.1175/2010JCLI3910.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, A. S. Phillips, J. Caron, and J. Yin, 2006: The dynamical simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19, 21622183, doi:10.1175/JCLI3762.1.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. S. Taschetto, D. W. J. Thompson, and M. H. England, 2011: The influence of Southern Hemisphere sea-ice extent on the latitude of the mid-latitude jet stream. Geophys. Res. Lett., 38, L15804, doi:10.1029/2011GL048056.

    • Search Google Scholar
    • Export Citation
  • Kodama, C., and T. Iwasaki, 2009: Influence of the SST rise on baroclinic instability wave activity under an aquaplanet condition. J. Atmos. Sci., 66, 22722287, doi:10.1175/2009JAS2964.1.

    • Search Google Scholar
    • Export Citation
  • Kvamstø, N. G., P. Skeie, and D. B. Stephenson, 2004: Impact of Labrador sea-ice extent on the North Atlantic oscillation. Int. J. Climatol., 24, 603612, doi:10.1002/joc.1015.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 1998: A geostropic vortex over a slope. J. Phys. Oceanogr., 28, 23622381, doi:10.1175/1520-0485(1998)028<2362:AGVOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., and J. C. Fyfe, 2006: Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: Results from the models participating in the IPCC diagnostic exercise. Climate Dyn., 26, 713728, doi:10.1007/s00382-006-0110-3.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1997: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteor. Soc., 78, 2133, doi:10.1175/1520-0477(1997)078<0021:IBGSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. Antonov, and T. Boyer, 2005: Warming of the world ocean, 1955–2003. Geophys. Res. Lett.,32, L02604, doi:10.1029/2004GL021592.

  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481654, doi:10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, doi:10.1175/2008JCLI2200.1.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2010: The position of the midlatitude storm track and eddy-driven westerlies in aquaplanet AGCMs. J. Atmos. Sci., 67, 39844000, doi:10.1175/2010JAS3477.1.

    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The Effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Climate,17, 857–876, doi:10.1175/1520-0442(2004)017<0857:TEONAS>2.0.CO;2.

  • McCabe, G. J., M. P. Clark, and M. C. Serreze, 2001: Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Climate, 14, 27632768, doi:10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Menéndez, C. G., V. Serafini, and H. Le Treut, 1999: The effect of sea-ice on the transient atmospheric eddies of the Southern Hemisphere. Climate Dyn., 15, 659671, doi:10.1007/s003820050308.

    • Search Google Scholar
    • Export Citation
  • Mizuta, R., M. Matsueda, H. Endo, and S. Yukimoto, 2011: Future change in extratropical cyclones associated with change in the upper troposphere. J. Climate, 24, 64566470, doi:10.1175/2011JCLI3969.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17, 18281844, doi:10.1175/1520-0442(2004)017<1828:SVITSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–346.

  • Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett.,35, L15709, doi:10.1029/2008GL034010.

  • Ogawa, F., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida, 2012: Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical ocean front. Geophys. Res. Lett.,39, L05804, doi:10.1029/2011GL049922.

  • Oruba, L., G. Lapeyre, and G. Riviére, 2013: On the poleward motion of midlatitude cyclones in a baroclinic meandering jet. J. Atmos. Sci., 70, 2629–2649, doi:10.1175/JAS-D-12-0341.1.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Pinto, J., U. Ulbrich, G. Leckebusch, T. Spangehl, M. Reyers, and S. Zacharias, 2007: Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Climate Dyn., 29, 195210, doi:10.1007/s00382-007-0230-4.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15,16091625, doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riviére, G., P. Arbogast, G. Lapeyre, and K. Maynard, 2012: A potential vorticity perspective on the motion of a mid-latitude winter storm. Geophys. Res. Lett.,39, L12808, doi:10.1029/2012GL052440.

  • Sampe, T., H. Nakamura, A. Goto, and W. Ohfuchi, 2010: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Climate, 23, 17931814, doi:10.1175/2009JCLI3163.1.

    • Search Google Scholar
    • Export Citation
  • Schuenemann, K. C., and J. J. Cassano, 2010: Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 2. Analysis of 21st century atmospheric changes using self-organizing maps. J. Geophys. Res., 115, D05108, doi:10.1029/2009JD011706.

    • Search Google Scholar
    • Export Citation
  • Seierstad, I. A., and J. Bader, 2009: Impact of a projected future Arctic sea ice reduction on extratropical storminess and the NAO. Climate Dyn., 33, 937–943, doi:10.1007/s00382-008-0463-x.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1993: A hurricane beta-drift law. J. Atmos. Sci., 50, 32133215, doi:10.1175/1520-0469(1993)050<3213:AHBDL>2.0.CO;2.

  • Sutyrin, G. G., and G. R. Flierl, 1994: Intense vortex motion on the beta plane: Development of the beta gyres. J. Atmos. Sci., 51, 773790, doi:10.1175/1520-0469(1994)051<0773:IVMOTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., J. G. Pinto, H. Kupfer, G. C. Leckebusch, T. Spangehl, and M. Reyers, 2008: Changing Northern Hemisphere storm tracks in an ensemble of IPCC climate change simulations. J. Climate, 21, 16691679, doi:10.1175/2007JCLI1992.1.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., G. Leckebusch, and J. Pinto, 2009: Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol., 96, 117131, doi:10.1007/s00704-008-0083-8.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., and Coauthors, 2013: Are greenhouse gas signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm? Meteor. Z., 22, 6168, doi:10.1127/0941-2948/2013/0420.

    • Search Google Scholar
    • Export Citation
  • Vilibić, I., and J. Šepić, 2010: Long-term variability and trends of sea level storminess and extremes in European seas. Global Planet. Change, 71, 112, doi:10.1016/j.gloplacha.2009.12.001.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., V. R. Swail, and F. W. Zwiers, 2006: Climatology and changes of extratropical cyclone activity: Comparison of ERA-40 with NCEP–NCAR reanalysis for 1958–2001. J. Climate, 19, 31453166, doi:10.1175/JCLI3781.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Elsevier, 627 pp.

  • Wu, Y., M. Ting, R. Seager, H.-P. Huang, and M. Cane, 2010: Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model. Climate Dyn., 37, 5372, doi:10.1007/s00382-010-0776-4.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of the 21st century climate. Geophys. Res. Lett.,32, L18701, doi:10.1029/2005GL023684.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 233 51 3
PDF Downloads 152 40 7