An Abrupt Decrease in the Late-Season Typhoon Activity over the Western North Pacific

Pang-Chi Hsu Earth System Modeling Center, Nanjing International Academy of Meteorological Sciences, Nanjing University of Information Science and Technology, Nanjing, China, and International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Pang-Chi Hsu in
Current site
Google Scholar
PubMed
Close
,
Pao-Shin Chu Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Pao-Shin Chu in
Current site
Google Scholar
PubMed
Close
,
Hiroyuki Murakami International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Hiroyuki Murakami in
Current site
Google Scholar
PubMed
Close
, and
Xin Zhao Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Xin Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In 1995 an abrupt shift in the late-season (October–December) typhoon activity over the western North Pacific (WNP) is detected by a Bayesian changepoint analysis. Interestingly, a similar change also occurs in the late-season sea surface temperature series over the western Pacific, eastern North Pacific, and portions of the Indian Ocean. All of the counts, lifespans, and accumulated cyclone energy of the late-season typhoons during the 1995–2011 epoch decreased significantly, compared with typhoons that occurred during the 1979–94 epoch. The negative vorticity anomaly is found to be the leading contributor to the genesis potential index (GPI) decrease over the southeastern sector of the WNP during 1995–2011. To elucidate the origin of the epochal change in the dynamic environmental conditions, a suite of sensitivity experiments is conducted based on the latest version of the Japan Meteorological Research Institute atmospheric general circulation model (MRI AGCM). The ensemble simulations suggest that the recent change to a La Niña–like state induces an unfavorable dynamic condition for typhoon genesis over the southeastern WNP. Warming in the Indian Ocean, however, contributes insignificantly to the circulation anomaly related to typhoon genesis over the southeastern WNP. The frequency of typhoon occurrence reveals a basinwide decrease over the WNP in the recent epoch, except for a small increase near Taiwan. An empirical statistical analysis shows that the basinwide decrease in the frequency of the typhoon occurrence is primarily attributed to a decrease in typhoon genesis, while the change in track is of less importance.

Earth System Modeling Center Contribution Number 001.

Corresponding author address: Pang-Chi Hsu, College of Atmospheric Science, Nanjing University of Information Science and Technology, No. 219, Ningliu Road, Nanjing 210044, China. E-mail: pangchi.hsu@gmail.com

Abstract

In 1995 an abrupt shift in the late-season (October–December) typhoon activity over the western North Pacific (WNP) is detected by a Bayesian changepoint analysis. Interestingly, a similar change also occurs in the late-season sea surface temperature series over the western Pacific, eastern North Pacific, and portions of the Indian Ocean. All of the counts, lifespans, and accumulated cyclone energy of the late-season typhoons during the 1995–2011 epoch decreased significantly, compared with typhoons that occurred during the 1979–94 epoch. The negative vorticity anomaly is found to be the leading contributor to the genesis potential index (GPI) decrease over the southeastern sector of the WNP during 1995–2011. To elucidate the origin of the epochal change in the dynamic environmental conditions, a suite of sensitivity experiments is conducted based on the latest version of the Japan Meteorological Research Institute atmospheric general circulation model (MRI AGCM). The ensemble simulations suggest that the recent change to a La Niña–like state induces an unfavorable dynamic condition for typhoon genesis over the southeastern WNP. Warming in the Indian Ocean, however, contributes insignificantly to the circulation anomaly related to typhoon genesis over the southeastern WNP. The frequency of typhoon occurrence reveals a basinwide decrease over the WNP in the recent epoch, except for a small increase near Taiwan. An empirical statistical analysis shows that the basinwide decrease in the frequency of the typhoon occurrence is primarily attributed to a decrease in typhoon genesis, while the change in track is of less importance.

Earth System Modeling Center Contribution Number 001.

Corresponding author address: Pang-Chi Hsu, College of Atmospheric Science, Nanjing University of Information Science and Technology, No. 219, Ningliu Road, Nanjing 210044, China. E-mail: pangchi.hsu@gmail.com
Save
  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81, S1S50, doi:10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, doi:10.1007/BF01030791.

    • Search Google Scholar
    • Export Citation
  • Burgman, R. J., A. C. Clement, C. M. Mitas, J. Chen, and K. Esslinger, 2008: Evidence for atmospheric variability over the Pacific on decadal timescales. Geophys. Res. Lett., 35, L01704, doi:10.1029/2007GL031830.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, doi:10.1175/JCLI4282.1.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2006: Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment.” Science, 311, 1713, doi:10.1126/science.1121522.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2008: Decadal variations of intense typhoon occurrence in the western North Pacific. Proc. Roy. Soc. London, 464A, 249272, doi:10.1098/rspa.2007.0183.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2009: Thermodynamic control on the climate of intense tropical cyclones. Proc. Roy. Soc. London,465A, 3011–3021, doi:10.1098/rspa.2009.0114.

  • Chang, C. P., P. A. Harr, and H.-J. Chen, 2005: Synoptic disturbances over the equatorial South China Sea and western maritime continent during boreal winter. Mon. Wea. Rev., 133, 489503, doi:10.1175/MWR-2868.1.

    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., M. Kimoto, M. Watanabe, M. Ishii, and T. Mochizuki, 2012: Relationship between the Pacific and Atlantic stepwise climate change during the 1990s. Geophys. Res. Lett., 39, L21710, doi:10.1029/2012GL053901.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., 2002: Large-scale circulation features associated with decadal variations of tropical cyclone activity over the central North Pacific. J. Climate, 15, 26782689, doi:10.1175/1520-0442(2002)015<2678:LSCFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., and X. Zhao, 2004: Bayesian change-point analysis of tropical cyclone activity: The central North Pacific case. J. Climate, 17, 48934901, doi:10.1175/JCLI-3248.1.

    • Search Google Scholar
    • Export Citation
  • Chu, P.-S., and X. Zhao, 2011: Bayesian analysis for extreme climatic events: A review. Atmos. Res., 102, 243262, doi:10.1016/j.atmosres.2011.07.001.

    • Search Google Scholar
    • Export Citation
  • Du, Y., L. Yang, and S. P. Xie, 2011: Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315322, doi:10.1175/2010JCLI3890.1.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455, 9295, doi:10.1038/nature07234.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, doi:10.1038/nature03906.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240241.

  • Gill, J., 2002: Bayesian Methods: A Social and Behavioral Sciences Approach.Chapman & Hall, 459 pp.

  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nunez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, doi:10.1126/science.1060040.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Harr, P. A., and J. C. L. Chan, 2005: Monsoon impacts on tropical cyclone variability. WMO Tech. Doc. 1266, 512–542.

  • Ho, C.-H., J.-J. Baik, J.-H. Kim, D.-Y. Gong, and C.-H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 17671776, doi:10.1175/1520-0442(2004)017<1767:ICISTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and P. J. Webster, 2007: Heightened tropical cyclone activity in the North Atlantic: Natural variability or climate trend? Philos. Trans. Roy. Soc.,A365, 26952716, doi:10.1098/rsta.2007.2083.

    • Search Google Scholar
    • Export Citation
  • Jin, C.-S., C.-H. Ho, J.-H. Kim, D.-K. Lee, D.-H. Cha, and S. W. Yeh, 2013: Critical role of northern off-equatorial sea surface temperature forcing associated with Central Pacific El Niño in more frequent tropical cyclone movement toward East Asia. J. Climate, 26, 25342545, doi:10.1175/JCLI-D-12-00287.1.

    • Search Google Scholar
    • Export Citation
  • JTWC, cited 2012: The Joint Typhoon Warning Center western North Pacific best track data. [Available online at http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/wpindex.html.]

  • Kajikawa, Y., and B. Wang, 2012: Interdecadal change of the South China Sea summer monsoon onset. J. Climate, 25, 32073218, doi:10.1175/JCLI-D-11-00207.1.

    • Search Google Scholar
    • Export Citation
  • Kamahori, H., N. Yamazaki, N. Mannoji, and K. Takahashi, 2006: Variability in intense tropical cyclone days in the western North Pacific. SOLA, 2, 104107, doi:10.2151/sola.2006-027.

    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods.Charles Griffin, 202 pp.

  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper, 2007: A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett., 34, L04815, doi:10.1029/2006GL028836.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 2005: Hurricanes and global warming. Nature, 438, E11E12, doi:10.1038/nature04477.

  • Lin, Y.-L., and C.-S. Lee, 2011: An analysis of tropical cyclone formations in the South China Sea during the late season. Mon. Wea. Rev., 139, 27482760, doi:10.1175/2011MWR3495.1.

    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2008: Interdecadal variability of western North Pacific tropical cyclone tracks. J. Climate, 21, 44644476, doi:10.1175/2008JCLI2207.1.

    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2013: Inactive period of western North Pacific tropical cyclone activity in 1998–2011. J. Climate, 26, 26142630, doi:10.1175/JCLI-D-12-00053.1.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Non-parametric test against trend. Econometrica, 13, 245259, doi:10.2307/1907187.

  • Mann, H. B., and D. R. Whitney, 1947: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat., 18, 5060, doi:10.1214/aoms/1177730491.

    • Search Google Scholar
    • Export Citation
  • Matsuura, T., M. Yumoto, and S. Iizuka, 2003: A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific. Climate Dyn., 21, 105117, doi:10.1007/s00382-003-0327-3.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., 1995: Tropical cyclone formation. Global Perspectives on Tropical Cyclones, R. L. Elsberry, Ed., World Meteorological Organization, 63–105.

  • Mizuta, R., and Coauthors, 2012: Climate simulations using the improved MRI-AGCM with 20-km grid. J. Meteor. Soc. Japan, 90A, 233258, doi:10.2151/jmsj.2012-A12.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2013: What percentage of western North Pacific tropical cyclones form within the monsoon trough? Mon. Wea. Rev., 141, 499505, doi:10.1175/MWR-D-12-00165.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 26992721, doi:10.1175/2010JCLI3338.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2012: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 32373260, doi:10.1175/JCLI-D-11-00415.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., B. Wang, T. Li, A. Kitoh, 2013: Projected increase in tropical cyclones near Hawaii. Nat. Climate Change,3, 749–754, doi:10.1038/nclimate1890.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, and D. P. Rowell, 2003: Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • RSMC, cited 2012: Regional Specialized Meteorological Centers–Tokyo Typhoon Center tropical cyclone data. [Available online at http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/trackarchives.html.]

  • Simiu, E., and R. H. Scanlon, 1978: Wind Effects on Structures.Wiley Interscience, 458 pp.

  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Takayabu, Y. N., and T. Nitta, 1993: 3–5 day disturbances coupled with convection in over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71, 221245.

    • Search Google Scholar
    • Export Citation
  • Tu, J.-Y., C. Chou, and P.-S. Chu, 2009: The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific–East Asian climate change. J. Climate, 22, 36173628, doi:10.1175/2009JCLI2411.1.

    • Search Google Scholar
    • Export Citation
  • Tu, J.-Y., C. Chou, P. Huang, and R. Huang, 2011: An abrupt increase of intense typhoons over the western North Pacific in early summer. Environ. Res. Lett., 6, 034013, doi:10.1088/1748-9326/6/3/034013.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, doi:10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846, doi:10.1126/science.1116448.

    • Search Google Scholar
    • Export Citation
  • Wilcoxon, F., 1945: Individual comparisons by ranking methods. Biom. Bull., 1, 8083, doi:10.2307/3001968.

  • Wu, L., B. Wang, and S. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32, L18703, doi:10.1029/2005GL022937.

  • Wu, M.-C., K.-H. Yeung, and W.-L. Chang, 2006: Trends in western North Pacific tropical cyclone intensity. Eos, Trans. Amer. Geophys. Union, 87, 537538, doi:10.1029/2006EO480001.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., S.-K. Kang, B. P. Kirtman, J.-H. Kim, M.-H. Kwon, and C.-H. Kim, 2010: Decadal change in relationship between western North Pacific tropical cyclone frequency and the tropical Pacific SST. Meteor. Atmos. Phys., 106, 179189, doi:10.1007/s00703-010-0057-0.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., and Y. N. Takayabu, 2013: Attribution of decadal variability in tropical cyclone passage frequency over the western North Pacific: A new approach emphasizing the genesis place of cyclones. J. Climate, 26, 973987, doi:10.1175/JCLI-D-12-00060.1.

    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and C.-C. Wu, 2011: Impact of SSTA in the East Indian Ocean on the frequency of northwest Pacific tropical cyclones: A regional atmospheric model. J. Climate, 24, 62276242, doi:10.1175/JCLI-D-10-05014.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, X., and P.-S. Chu, 2010: Bayesian changepoint analysis for extreme events (typhoons, heavy rainfall, and heat waves): An RJMCMC approach. J. Climate, 23, 10341046, doi:10.1175/2009JCLI2597.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1019 295 26
PDF Downloads 734 209 19