Convection over Tropical Africa and the East Atlantic during the West African Monsoon: Regional and Diurnal Variability

Matthew A. Janiga RSMAS, University of Miami, Miami, Florida

Search for other papers by Matthew A. Janiga in
Current site
Google Scholar
PubMed
Close
and
Chris D. Thorncroft University at Albany, State University of New York, Albany, New York

Search for other papers by Chris D. Thorncroft in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The geographic and diurnal variability of moist convection over tropical Africa and the east Atlantic is examined using the Tropical Rainfall Measuring Mission (TRMM) satellite and related to the variability of the convective environment. The stratiform rain fraction is highest within oceanic and continental regions just north of the equator. Both regions have high column relative humidity (CRH). In both monsoon and semiarid continental regions, stratiform rain fractions are significantly higher on days when the CRH is high, which suggests a relationship between these quantities. Large convective systems with high echo tops dominate the rainfall over the Sahel. The importance of CAPE and shear to the development of these types of systems is suggested by the fact these systems are especially common on days when the CAPE and shear are unusually high.

Both deep convective and stratiform conditional rain rates increase with the size and echo-top height of convective systems. According to the TRMM Precipitation Radar (PR) near-surface rain rate, the highest deep convective and stratiform conditional rain rates occur off the coast of West Africa. However, comparisons between the PR near-surface rain rate and rain rates computed from Z–R relationships from the literature suggest that deep convective conditional rain rates over the Sahel are underestimated by the TRMM precipitation algorithm. Over the Sahel, small (large) convective systems produce most of the rainfall in the afternoon (early morning). This is associated with enhanced convective rainfall in the afternoon and stratiform in the early morning. The transition from small to large convective systems as convection propagates away from topographic features is also observed.

Corresponding author address: Matthew A. Janiga, RSMAS/MPO, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: m.janiga@rsmas.miami.edu

Abstract

The geographic and diurnal variability of moist convection over tropical Africa and the east Atlantic is examined using the Tropical Rainfall Measuring Mission (TRMM) satellite and related to the variability of the convective environment. The stratiform rain fraction is highest within oceanic and continental regions just north of the equator. Both regions have high column relative humidity (CRH). In both monsoon and semiarid continental regions, stratiform rain fractions are significantly higher on days when the CRH is high, which suggests a relationship between these quantities. Large convective systems with high echo tops dominate the rainfall over the Sahel. The importance of CAPE and shear to the development of these types of systems is suggested by the fact these systems are especially common on days when the CAPE and shear are unusually high.

Both deep convective and stratiform conditional rain rates increase with the size and echo-top height of convective systems. According to the TRMM Precipitation Radar (PR) near-surface rain rate, the highest deep convective and stratiform conditional rain rates occur off the coast of West Africa. However, comparisons between the PR near-surface rain rate and rain rates computed from Z–R relationships from the literature suggest that deep convective conditional rain rates over the Sahel are underestimated by the TRMM precipitation algorithm. Over the Sahel, small (large) convective systems produce most of the rainfall in the afternoon (early morning). This is associated with enhanced convective rainfall in the afternoon and stratiform in the early morning. The transition from small to large convective systems as convection propagates away from topographic features is also observed.

Corresponding author address: Matthew A. Janiga, RSMAS/MPO, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: m.janiga@rsmas.miami.edu
Save
  • Austin, P. M., and S. G. Geotis, 1979: Raindrop sizes and related parameters for GATE. J. Appl. Meteor., 18, 569575, doi:10.1175/1520-0450(1979)018<0569:RSARPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., T. Iguchi, H. Kumagai, and K. Okamoto, 1997: Rain type classification algorithm for TRMM precipitation radar. Proc. IGARSS ‘97, Vol. 4, Singapore, IEEE, 16331635, doi:10.1109/IGARSS.1997.608993.

  • Barnes, G. M., and K. Sieckman, 1984: The environment of fast- and slow-moving tropical mesoscale convective cloud lines. Mon. Wea. Rev., 112, 17821794, doi:10.1175/1520-0493(1984)112<1782:TEOFAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, H. C., and R. A. Houze, 2013: The precipitating cloud population of the Madden–Julian oscillation over the Indian and west Pacific Oceans. J. Geophys. Res. Atmos., 118, 69967023, doi:10.1002/jgrd.50375.

    • Search Google Scholar
    • Export Citation
  • Berg, W., T. L’Ecuyer, and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor., 45, 434454, doi:10.1175/JAM2331.1.

    • Search Google Scholar
    • Export Citation
  • Berry, G. J., and C. D. Thorncroft, 2005: Case study of an intense African easterly wave. Mon. Wea. Rev.,133, 752–766, doi:10.1175/MWR2884.1.

  • Berry, G. J., and C. D. Thorncroft, 2012: African easterly wave dynamics in a mesoscale numerical model: The upscale role of convection. J. Atmos. Sci.,69, 1267–1283, doi:10.1175/JAS-D-11-099.1.

  • Braun, S. A., 2010: Reevaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 138, 20072037, doi:10.1175/2009MWR3135.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54, 27602774, doi:10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and J. M. Prospero, 1972: The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteor.,11, 283–297, doi:10.1175/1520-0450(1972)011<0283:TLSMOS>2.0.CO;2.

  • Cecil, D. J., E. J. Zipser, and S. W. Nesbitt, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784, doi:10.1175/1520-0493(2002)130<0769:RISALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cunning, J. B., and R. I. Sax, 1977: A Z–R relationship for the GATE B-scale array. Mon. Wea. Rev., 105, 13301336, doi:10.1175/1520-0493(1977)105<1330:ARFTGB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., J. Wu, and Y. Chen, 2012: Characteristics of mesoscale organization in WRF simulations of convection during TWP-ICE. J. Climate, 25, 56665688, doi:10.1175/JCLI-D-11-00422.1.

    • Search Google Scholar
    • Export Citation
  • Fortune, M., 1980: Properties of African squall lines inferred from time-lapse satellite imagery. Mon. Wea. Rev., 108, 153168, doi:10.1175/1520-0493(1980)108<0153:POASLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fuentes, J. D., B. Geerts, T. Dejene, P. D’Odorico, and E. Joseph, 2008: Vertical attributes of precipitation systems in West Africa and adjacent Atlantic Ocean. Theor. Appl. Climatol., 92, 181193, doi:10.1007/s00704-007-0318-0.

    • Search Google Scholar
    • Export Citation
  • Funk, A., C. Schumacher, and J. Awaka, 2013: Analysis of rain classifications over the tropics by version 7 of the TRMM PR 2A23 algorithm. J. Meteor. Soc. Japan, 91, 257271, doi:10.2151/jmsj.2013-302.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and T. Dejene, 2005: Regional and diurnal variability of the vertical structure of precipitation systems in Africa based on spaceborne radar data. J. Climate, 18, 893916, doi:10.1175/JCLI-3316.1.

    • Search Google Scholar
    • Export Citation
  • Gosset, M., E.-P. Zahiri, and S. Moumouni, 2010: Rain drop size distribution variability and impact on X-band polarimetric radar retrieval: Results from the AMMA campaign in Benin. Quart. J. Roy. Meteor. Soc., 136, 243256, doi:10.1002/qj.556.

    • Search Google Scholar
    • Export Citation
  • Guy, N., and S. A. Rutledge, 2012: Regional comparison of West African convective characteristics: A TRMM-based climatology. Quart. J. Roy. Meteor. Soc., 138, 1179–1195, doi:10.1002/qj.1865.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., and C. Zhang, 2010: Diabatic heating, divergent circulation and moisture transport in the African monsoon system. Quart. J. Roy. Meteor. Soc., 136, 411425, doi:10.1002/qj.538.

    • Search Google Scholar
    • Export Citation
  • Hamilton, R. A., J. W. Archbold, and C. K. M. Douglas, 1945: Meteorology of Nigeria and adjacent territory. Quart. J. Roy. Meteor. Soc., 71, 231264, doi:10.1002/qj.49707130905.

    • Search Google Scholar
    • Export Citation
  • Hirose, M., and K. Nakamura, 2004: Spatiotemporal variation of the vertical gradient of rainfall rate observed by the TRMM Precipitation Radar. J. Climate, 17, 33783397, doi:10.1175/1520-0442(2004)017<3378:SVOTVG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hirose, M., R. Oki, S. Shimizu, M. Kachi, and T. Higashiuwatoko, 2008: Finescale diurnal rainfall statistics refined from eight years of TRMM PR data. J. Appl. Meteor. Climatol., 47, 544561, doi:10.1175/2007JAMC1559.1.

    • Search Google Scholar
    • Export Citation
  • Hirose, M., R. Oki, D. A. Short, and K. Nakamura, 2009: Regional characteristics of scale-based precipitation systems from ten years of TRMM PR data. J. Meteor. Soc. Japan,87A, 353368, doi:10.2151/jmsj.87A.353.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., and C. D. Thorncroft, 1997: Distribution and statistics of African mesoscale convective weather systems based on the ISCCP Meteosat imagery. Mon. Wea. Rev., 125, 28212837, doi:10.1175/1520-0493(1997)125<2821:DASOAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, doi:10.1175/2008JAS2806.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461, doi:10.1002/qj.49711548702.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, doi:10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor.,8, 38–55, doi:10.1175/JHM560.1.

  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto, 2000: Rain-profiling algorithm for the TRMM Precipitation Radar. J. Appl. Meteor.,39, 2038–2052, doi:10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2.

  • Iguchi, T., T. Kozu, J. Kwiatowski, R. Meneghini, J. Awaka, and K. Okamoto, 2009: Uncertainties in the rain profiling algorithm for the TRMM Precipitation Radar. J. Meteor. Soc. Japan, 87A, 130, doi:10.2151/jmsj.87A.1.

    • Search Google Scholar
    • Export Citation
  • Iida, Y., T. Kubota, T. Iguchi, and R. Oki, 2010: Evaluating sampling error in TRMM/PR rainfall products by the bootstrap method: Estimation of the sampling error and its application to a trend analysis. J. Geophys. Res., 115, D22119, doi:10.1029/2010JD014257.

    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. D. Thorncroft, 2013: Regional differences in the kinematic and thermodynamic structure of African easterly waves. Quart. J. Roy. Meteor. Soc., 139, 15981614, doi:10.1002/qj.2047.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., Y. Hong, J. J. Gourley, M. Schwaller, W. Petersen, and J. Zhang, 2013: Comparison of TRMM 2A25 products, version 6 and version 7, with NOAA/NSSL ground radar–based National Mosaic QPE. J. Hydrometeor., 14, 661669, doi:10.1175/JHM-D-12-030.1.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., T. Iguchi, T. Kubota, N. Yoshida, S. Seto, J. Kwiatowski, and Y. N. Takayabu, 2009: Feasibility of raindrop size distribution parameter estimation with TRMM Precipitation Radar. J. Meteor. Soc. Japan, 87A, 5366, doi:10.2151/jmsj.87A.53.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., J. M. Fritsch, and A. J. Negri, 1999: Contribution of mesoscale convective complexes to rainfall in Sahelian Africa: Estimates from geostationary infrared and passive microwave data. J. Appl. Meteor., 38, 957964, doi:10.1175/1520-0450(1999)038<0957:COMCCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., R. Carbone, V. Levizzani, and J. Tuttle, 2008: The propagation and diurnal cycles of deep convection in northern tropical Africa. Quart. J. Roy. Meteor. Soc., 134, 93109, doi:10.1002/qj.194.

    • Search Google Scholar
    • Export Citation
  • Liu, C., 2011: Rainfall contributions from precipitation systems with different sizes, convective intensities, and durations over the tropics and subtropics. J. Hydrometeor., 12, 394412, doi:10.1175/2010JHM1320.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, and S. W. Nesbitt, 2007: Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. J. Climate, 20, 489503, doi:10.1175/JCLI4023.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., M. Desbois, and J.-P. Duvel, 1992: Structural characteristics of deep convective systems over tropical Africa and the Atlantic Ocean. Mon. Wea. Rev., 120, 392406, doi:10.1175/1520-0493(1992)120<0392:SCODCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mathon, V., and H. Laurent, 2001: Life cycle of Sahelian mesoscale convective cloud systems. Quart. J. Roy. Meteor. Soc., 127, 377406, doi:10.1002/qj.49712757208.

    • Search Google Scholar
    • Export Citation
  • Mathon, V., H. Laurent, and T. Lebel, 2002: Mesoscale convective system rainfall in the Sahel. J. Appl. Meteor., 41, 10811092, doi:10.1175/1520-0450(2002)041<1081:MCSRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and C. D. Thorncroft, 2006: Intense convective systems in West Africa and their relationship to the African easterly jet. Quart. J. Roy. Meteor. Soc., 132, 163176, doi:10.1256/qj.05.55.

    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., C. D. Kummerow, and G. Elsaesser, 2012: Relationships between the raindrop size distribution and properties of the environment and clouds inferred from TRMM. J. Climate, 25, 29632978, doi:10.1175/JCLI-D-11-00274.1.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate,16, 1456–1475.

  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106, doi:10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nguyen, H., and J.-P. Duvel, 2008: Synoptic wave perturbations and convective systems over equatorial Africa. J. Climate,21, 6372–6388, doi:10.1175/2008JCLI2409.1.

  • Nicholls, S. D., and K. I. Mohr, 2010: An analysis of the environments of intense convective systems in West Africa in 2003. Mon. Wea. Rev., 138, 37213739, doi:10.1175/2010MWR3321.1.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and Coauthors, 2005a: The diurnal cycle of the West African monsoon circulation. Quart. J. Roy. Meteor. Soc., 131, 28392860, doi:10.1256/qj.04.52.

    • Search Google Scholar
    • Export Citation
  • Parker, D. J., C. D. Thorncroft, R. R. Burton, and A. Diongue-Niang, 2005b: Analysis of the African easterly jet, using aircraft observations from the JET2000 experiment. Quart. J. Roy. Meteor. Soc., 131, 14611482, doi:10.1256/qj.03.189.

    • Search Google Scholar
    • Export Citation
  • Pearson, K. J., G. M. S. Lister, C. E. Birch, R. P. Allan, R. J. Gogan, and S. J. Woolnough, 2013: Modelling the diurnal cycle of tropical convection across the ‘grey zone.’ Quart. J. Roy. Meteor. Soc.,140, 491–499, doi:10.1002/qj.2145.

  • Rasmussen, K. L., S. L. Choi, M. D. Zuluaga, and R. A. Houze, 2013: TRMM precipitation bias in extreme storms in South America. Geophys. Res. Lett., 40, 34573461, doi:10.1002/grl.50651.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T., R. Nieto Ferreira, N. Guy, and E. Williams, 2009: Radar-observed squall line propagation and the diurnal cycle of convection in Niamey, Niger, during the 2006 African Monsoon and Multidisciplinary Analysis intensive observing period. J. Geophys. Res., 114, D03107, doi:10.1029/2008JD010871.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze, 2011a: Characteristics of precipitating convective systems in the premonsoon season of South Asia. J. Hydrometeor., 12, 157180, doi:10.1175/2010JHM1311.1.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze, 2011b: Characteristics of precipitating convective systems in the South Asian monsoon. J. Hydrometeor., 12, 326, doi:10.1175/2010JHM1289.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sauvageot, H., and J.-P. Lacaux, 1995: The shape of averaged drop size distributions. J. Atmos. Sci.,52, 1070–1083, doi:10.1175/1520-0469(1995)052<1070:TSOADS>2.0.CO;2.

  • Schumacher, C., and R. A. Houze, 2003a: The TRMM Precipitation Radar’s view of shallow, isolated rain. J. Appl. Meteor., 42, 15191524, doi:10.1175/1520-0450(2003)042<1519:TTPRVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze, 2003b: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, doi:10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze, 2006: Stratiform precipitation production over sub-Saharan Africa and the tropical east Atlantic as observed by TRMM. Quart. J. Roy. Meteor. Soc., 132, 22352255, doi:10.1256/qj.05.121.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., M. H. Zhang, and P. E. Ciesielski, 2007: Heating structures of the TRMM field campaigns. J. Atmos. Sci., 64, 25932610, doi:10.1175/JAS3938.1.

    • Search Google Scholar
    • Export Citation
  • Shimizu, S., R. Oki, T. Tagawa, T. Iguchi, and M. Hirose, 2009: Evaluation of the effects of the orbit boost of the TRMM satellite on PR rain estimates. J. Meteor. Soc. Japan, 87A, 8392, doi:10.2151/jmsj.87A.83.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., and K. Nakamura, 2000: TRMM radar observations of shallow precipitation over the tropical oceans. J. Climate, 13, 41074124, doi:10.1175/1520-0442(2000)013<4107:TROOSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor.,35, 355–371, doi:10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2.

  • TRMM Precipitation Radar Team, 2011: Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar Algorithm—Instruction manual for version 7. [Available online at http://www.eorc.jaxa.jp/TRMM/documents/PR_algorithm_product_information/pr_manual/PR_Instruction_Manual_V7_L1.pdf.]

  • Uijlenhoet, R., M. Steiner, and J. A. Smith, 2003: Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation. J. Hydrometeor., 4, 4361, doi:10.1175/1525-7541(2003)004<0043:VORSDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and M. A. Janiga, 2012: Atlantic tropical cyclogenesis: A three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon. Wea. Rev., 140, 11081124, doi:10.1175/MWR-D-11-00122.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, doi:10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamamoto, M. K., F. A. Furuzawa, A. Higuchi, and K. Nakamura, 2008: Comparison of diurnal variations in precipitation systems observed by TRMM PR, TMI, and VIRS. J. Climate, 21, 40114028, doi:10.1175/2007JCLI2079.1.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze, 1998: The natural variability of precipitating clouds over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 124, 5399, doi:10.1002/qj.49712454504.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., W. K. M. Lau, and C. Liu, 2013: Rain characteristics and large-scale environments of precipitation objects with extreme rain volumes from TRMM observations. J. Geophys. Res. Atmos., 118, 96739689, doi:10.1002/jgrd.50776.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., C. Liu, D. J. Cecil, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 745 433 115
PDF Downloads 282 61 6