Nonlinearity of Ocean Carbon Cycle Feedbacks in CMIP5 Earth System Models

Jörg Schwinger * Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Jörg Schwinger in
Current site
Google Scholar
PubMed
Close
,
Jerry F. Tjiputra Uni Climate, Uni Research AS, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Jerry F. Tjiputra in
Current site
Google Scholar
PubMed
Close
,
Christoph Heinze Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, and Uni Climate, Uni Research AS, Bergen, Norway

Search for other papers by Christoph Heinze in
Current site
Google Scholar
PubMed
Close
,
Laurent Bopp Laboratoire des Sciences du Climat et de l’Environnement, Gif sur Yvette, France

Search for other papers by Laurent Bopp in
Current site
Google Scholar
PubMed
Close
,
James R. Christian Canadian Centre for Climate Modelling and Analysis, Victoria, British Columbia, Canada

Search for other papers by James R. Christian in
Current site
Google Scholar
PubMed
Close
,
Marion Gehlen Laboratoire des Sciences du Climat et de l’Environnement, Gif sur Yvette, France

Search for other papers by Marion Gehlen in
Current site
Google Scholar
PubMed
Close
,
Tatiana Ilyina ** Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Tatiana Ilyina in
Current site
Google Scholar
PubMed
Close
,
Chris D. Jones Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Chris D. Jones in
Current site
Google Scholar
PubMed
Close
,
David Salas-Mélia Centre National de Recherches Météorologiques, Météo-France, Toulouse, France

Search for other papers by David Salas-Mélia in
Current site
Google Scholar
PubMed
Close
,
Joachim Segschneider ** Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Joachim Segschneider in
Current site
Google Scholar
PubMed
Close
,
Roland Séférian @@ Laboratoire des Sciences du Climat et de l’Environnement, Gif sur Yvette, and Centre National de Recherches Météorologiques, Météo-France, Toulouse, France

Search for other papers by Roland Séférian in
Current site
Google Scholar
PubMed
Close
, and
Ian Totterdell Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Ian Totterdell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Carbon cycle feedbacks are usually categorized into carbon–concentration and carbon–climate feedbacks, which arise owing to increasing atmospheric CO2 concentration and changing physical climate. Both feedbacks are often assumed to operate independently: that is, the total feedback can be expressed as the sum of two independent carbon fluxes that are functions of atmospheric CO2 and climate change, respectively. For phase 5 of the Coupled Model Intercomparison Project (CMIP5), radiatively and biogeochemically coupled simulations have been undertaken to better understand carbon cycle feedback processes. Results show that the sum of total ocean carbon uptake in the radiatively and biogeochemically coupled experiments is consistently larger by 19–58 petagrams of carbon (Pg C) than the uptake found in the fully coupled model runs. This nonlinearity is small compared to the total ocean carbon uptake (533–676 Pg C), but it is of the same order as the carbon–climate feedback. The weakening of ocean circulation and mixing with climate change makes the largest contribution to the nonlinear carbon cycle response since carbon transport to depth is suppressed in the fully relative to the biogeochemically coupled simulations, while the radiatively coupled experiment mainly measures the loss of near-surface carbon owing to warming of the ocean. Sea ice retreat and seawater carbon chemistry contribute less to the simulated nonlinearity. The authors’ results indicate that estimates of the ocean carbon–climate feedback derived from “warming only” (radiatively coupled) simulations may underestimate the reduction of ocean carbon uptake in a warm climate high CO2 world.

Denotes Open Access content.

Corresponding author address: Jörg Schwinger, Geophysical Institute, Allégaten 70, 5007 Bergen, Norway. E-mail: jorg.schwinger@gfi.uib.no

This article is included in the (C4MIP) Climate–Carbon Interactions in the CMIP5 Earth System Models special collection.

Abstract

Carbon cycle feedbacks are usually categorized into carbon–concentration and carbon–climate feedbacks, which arise owing to increasing atmospheric CO2 concentration and changing physical climate. Both feedbacks are often assumed to operate independently: that is, the total feedback can be expressed as the sum of two independent carbon fluxes that are functions of atmospheric CO2 and climate change, respectively. For phase 5 of the Coupled Model Intercomparison Project (CMIP5), radiatively and biogeochemically coupled simulations have been undertaken to better understand carbon cycle feedback processes. Results show that the sum of total ocean carbon uptake in the radiatively and biogeochemically coupled experiments is consistently larger by 19–58 petagrams of carbon (Pg C) than the uptake found in the fully coupled model runs. This nonlinearity is small compared to the total ocean carbon uptake (533–676 Pg C), but it is of the same order as the carbon–climate feedback. The weakening of ocean circulation and mixing with climate change makes the largest contribution to the nonlinear carbon cycle response since carbon transport to depth is suppressed in the fully relative to the biogeochemically coupled simulations, while the radiatively coupled experiment mainly measures the loss of near-surface carbon owing to warming of the ocean. Sea ice retreat and seawater carbon chemistry contribute less to the simulated nonlinearity. The authors’ results indicate that estimates of the ocean carbon–climate feedback derived from “warming only” (radiatively coupled) simulations may underestimate the reduction of ocean carbon uptake in a warm climate high CO2 world.

Denotes Open Access content.

Corresponding author address: Jörg Schwinger, Geophysical Institute, Allégaten 70, 5007 Bergen, Norway. E-mail: jorg.schwinger@gfi.uib.no

This article is included in the (C4MIP) Climate–Carbon Interactions in the CMIP5 Earth System Models special collection.

Save
  • Andrews, T., M. A. Ringer, M. Doutriaux-Boucher, M. J. Webb, and W. J. Collins, 2012: Sensitivity of an Earth system climate model to idealized radiative forcing. Geophys. Res. Lett., 39, L10702, doi:10.1029/2012GL051942.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2013: Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Climate, 26, 5289–5314, doi:10.1175/JCLI-D-12-00494.1.

    • Search Google Scholar
    • Export Citation
  • Assmann, K. M., M. Bentsen, J. Segschneider, and C. Heinze, 2010: An isopycnic ocean carbon cycle model. Geosci. Model Dev., 3, 143167, doi:10.5194/gmd-3-143-2010.

    • Search Google Scholar
    • Export Citation
  • Aumont, O., and L. Bopp, 2006: Globalizing results from ocean in situ iron fertilization studies. Global Biogeochem. Cycles, 20, GB2017, doi:10.1029/2005GB002591.

    • Search Google Scholar
    • Export Citation
  • Bernardello, R., I. Marinov, J. B. Palter, J. L. Sarmiento, E. D. Galbraith, and R. D. Slater, 2013: Response of the ocean natural carbon storage to projected twenty-first-century climate change. J. Climate, 27, 2033–2053, doi:10.1175/JCLI-D-13-00343.1.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and V. Arora, 2009: Temperature and concentration feedbacks in the carbon cycle. Geophys. Res. Lett., 36, L02704, doi:10.1029/2008GL036220.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and V. Arora, 2013: Feedbacks in emission-driven and concentration-driven global carbon budgets. J. Climate, 26, 33263341, doi:10.1175/JCLI-D-12-00365.1.

    • Search Google Scholar
    • Export Citation
  • Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-system model—HadGEM2. Geosci. Model Dev., 4, 10511075, doi:10.5194/gmd-4-1051-2011.

    • Search Google Scholar
    • Export Citation
  • Cox, P., R. Betts, C. Jones, S. Spall, and I. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184187, doi:10.1038/35041539.

    • Search Google Scholar
    • Export Citation
  • de Arellano, J. V.-G., C. C. van Heerwaarden, and J. Lelieveld, 2012: Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere. Nat. Geosci., 5, 701704, doi:10.1038/ngeo1554.

    • Search Google Scholar
    • Export Citation
  • Dickson, A. G., 1990: Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Res. I, 37, 755766, doi:10.1016/0198-0149(90)90004-F.

    • Search Google Scholar
    • Export Citation
  • Dickson, A. G., and F. J. Millero, 1987: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. I, 34, 17331743, doi:10.1016/0198-0149(87)90021-5.

    • Search Google Scholar
    • Export Citation
  • Doutriaux-Boucher, M., M. J. Webb, J. M. Gregory, and O. Boucher, 2009: Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys. Res. Lett., 36, L02703, doi:10.1029/2008GL036273.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., L. Fairhead, H. Le Treut, M. Berthelot, L. Bopp, P. Ciais, P. Friedlingstein, and P. Monfray, 2002: On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett., 29, doi:10.1029/2001GL013777.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Search Google Scholar
    • Export Citation
  • Eriksson, E., 1963: Possible fluctuations in atmospheric carbon dioxide due to changes in properties of sea. J. Geophys. Res., 68, 38713876, doi:10.1029/JZ068i013p03871.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., J. Dufresne, P. Cox, and P. Rayner, 2003: How positive is the feedback between climate change and the carbon cycle? Tellus, 55B, 692700, doi:10.1034/j.1600-0889.2003.01461.x.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 33373353, doi:10.1175/JCLI3800.1.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst.,5, 572–597, doi:10.1002/jame.20038.

  • Gregory, J. M., C. D. Jones, P. Cadule, and P. Friedlingstein, 2009: Quantifying carbon cycle feedbacks. J. Climate, 22, 52325250, doi:10.1175/2009JCLI2949.1.

    • Search Google Scholar
    • Export Citation
  • Ilyina, T., K. D. Six, J. Segschneider, E. Maier-Reimer, H. Li, and I. Núñez Riboni, 2013: Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. J. Adv. Model. Earth Syst., 5, 287315, doi:10.1029/2012MS000178.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2013: The global carbon budget 1959–2011. Earth Syst. Sci. Data, 5, 165185, doi:10.5194/essd-5-165-2013.

    • Search Google Scholar
    • Export Citation
  • Long, M. C., K. Lindsay, S. Peacock, J. K. Moore, and S. C. Doney, 2013: Twentieth-century oceanic carbon uptake and storage in CESM1(BGC). J. Climate, 26, 6775–6800, doi:10.1175/JCLI-D-12-00184.1.

    • Search Google Scholar
    • Export Citation
  • Maier-Reimer, E., U. Mikolajewicz, and A. Winguth, 1996: Future ocean uptake of CO2: Interaction between ocean circulation and biology. Climate Dyn., 12, 711721, doi:10.1007/s003820050138.

    • Search Google Scholar
    • Export Citation
  • Matear, R., and A. Hirst, 1999: Climate change feedback on the future oceanic CO2 uptake. Tellus, 51B, 722733, doi:10.1034/j.1600-0889.1999.t01-1-00012.x.

    • Search Google Scholar
    • Export Citation
  • Millero, F. J., 1995: Thermodynamics of the carbon dioxide system in the oceans. Geochim. Cosmochim. Acta, 59, 661677, doi:10.1016/0016-7037(94)00354-O.

    • Search Google Scholar
    • Export Citation
  • Moore, J. K., K. Lindsay, S. Doney, M. Long, and K. Misumi, 2013: Marine ecosystem dynamics and biogeochemical cycling in the Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 scenarios. J. Climate, 26, 9291–9312, doi:10.1175/JCLI-D-12-00566.1.

    • Search Google Scholar
    • Export Citation
  • Oschlies, A., K. G. Schulz, U. Riebesell, and A. Schmittner, 2008: Simulated 21st century’s increase in oceanic suboxia by CO2-enhanced biotic carbon export. Global Biogeochem. Cycles, 22, doi:10.1029/2007GB003147.

    • Search Google Scholar
    • Export Citation
  • Palmer, J., and I. Totterdell, 2001: Production and export in a global ocean ecosystem model. Deep-Sea Res. I, 48, 11691198, doi:10.1016/S0967-0637(00)00080-7.

    • Search Google Scholar
    • Export Citation
  • Plattner, G.-K., and Coauthors, 2008: Long-term climate commitments projected with climate–carbon cycle models. J. Climate, 21, 27212751, doi:10.1175/2007JCLI1905.1.

    • Search Google Scholar
    • Export Citation
  • Revelle, R., and H. Suess, 1957: Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus, 9, 1827, doi:10.1111/j.2153-3490.1957.tb01849.x.

    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371, doi:10.1126/science.1097403.

  • Sallée, J.-B., R. J. Matear, S. R. Rintoul, and A. Lenton, 2012: Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci., 5, 579584, doi:10.1038/ngeo1523.

    • Search Google Scholar
    • Export Citation
  • Sallée, J.-B., E. Shuckburgh, N. Bruneau, A. J. S. Meijers, T. J. Bracegirdle, Z. Wang, and T. Roy, 2013: Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response. J. Geophys. Res., 118, 18301844, doi:10.1002/jgrc.20135.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J., and C. Le Quéré, 1996: Oceanic carbon dioxide uptake in a model of century-scale global warming. Science, 274, 13461350, doi:10.1126/science.274.5291.1346.

    • Search Google Scholar
    • Export Citation
  • Schneider, B., and Coauthors, 2008: Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeosciences, 5, 597614, doi:10.5194/bg-5-597-2008.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science, 271, 14021406, doi:10.1126/science.271.5254.1402.

    • Search Google Scholar
    • Export Citation
  • Siegenthaler, U., and H. Oeschger, 1978: Predicting future atmospheric carbon-dioxide levels. Science, 199, 388395, doi:10.1126/science.199.4327.388.

    • Search Google Scholar
    • Export Citation
  • Tagliabue, A., L. Bopp, and M. Gehlen, 2011: The response of marine carbon and nutrient cycles to ocean acidification: Large uncertainties related to phytoplankton physiological assumptions. Global Biogeochem. Cycles, 25, GB3017, doi:10.1029/2010GB003929.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Coauthors, 2009: Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res. II, 56, 554577, doi:10.1016/j.dsr2.2008.12.009.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tjiputra, J. F., K. Assmann, and C. Heinze, 2010: Anthropogenic carbon dynamics in the changing ocean. Ocean Sci., 6, 605614, doi:10.5194/os-6-605-2010.

    • Search Google Scholar
    • Export Citation
  • Tjiputra, J. F., C. Roelandt, M. Bentsen, D. M. Lawrence, T. Lorentzen, J. Schwinger, O. Seland, and C. Heinze, 2013: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev., 6, 301325, doi:10.5194/gmd-6-301-2013.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40 (9–10), 20912121, doi:10.1007/s00382-011-1259-y.

    • Search Google Scholar
    • Export Citation
  • Weiss, R., 1970: Solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res. Oceanogr. Abstr., 17, 721735, doi:10.1016/0011-7471(70)90037-9.

    • Search Google Scholar
    • Export Citation
  • Weiss, R., 1974: Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem., 2, 203215, doi:10.1016/0304-4203(74)90015-2.

    • Search Google Scholar
    • Export Citation
  • Zahariev, K., J. R. Christian, and K. L. Denman, 2008: Preindustrial, historical, and fertilization simulations using a global ocean carbon model with new parameterizations of iron limitation, calcification, and N-2 fixation. Prog. Oceanogr., 77, 5682, doi:10.1016/j.pocean.2008.01.007.

    • Search Google Scholar
    • Export Citation
  • Zeebe, R. E., and D. A. Wolf-Gladrow, 2001: CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier Science, 360 pp.

  • Zickfeld, K., M. Eby, H. D. Matthews, A. Schmittner, and A. J. Weaver, 2011: Nonlinearity of carbon cycle feedbacks. J. Climate, 24, 42554275, doi:10.1175/2011JCLI3898.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1383 647 10
PDF Downloads 566 139 13