ENSO Asymmetry in CMIP5 Models

Tao Zhang Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Search for other papers by Tao Zhang in
Current site
Google Scholar
PubMed
Close
and
De-Zheng Sun Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado

Search for other papers by De-Zheng Sun in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The El Niño–La Niña asymmetry is evaluated in 14 coupled models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The results show that an underestimate of ENSO asymmetry, a common problem noted in CMIP3 models, remains a common problem in CMIP5 coupled models. The weaker ENSO asymmetry in the models primarily results from a weaker SST warm anomaly over the eastern Pacific and a westward shift of the center of the anomaly. In contrast, SST anomalies for the La Niña phase are close to observations.

Corresponding Atmospheric Model Intercomparison Project (AMIP) runs are analyzed to understand the causes of the underestimate of ENSO asymmetry in coupled models. The analysis reveals that during the warm phase, precipitation anomalies are weaker over the eastern Pacific, and westerly wind anomalies are confined more to the west in most models. The time-mean zonal winds are stronger over the equatorial central and eastern Pacific for most models. Wind-forced ocean GCM experiments suggest that the stronger time-mean zonal winds and weaker asymmetry in the interannual anomalies of the zonal winds in AMIP models can both be a contributing factor to a weaker ENSO asymmetry in the corresponding coupled models, but the former appears to be a more fundamental factor, possibly through its impact on the mean state. The study suggests that the underestimate of ENSO asymmetry in the CMIP5 coupled models is at least in part of atmospheric origin.

Corresponding author address: Dr. Tao Zhang, NOAA/ESRL/PSD, 325 Broadway, R/PSD1, Boulder, CO 80305. E-mail: tao.zhang@noaa.gov

Abstract

The El Niño–La Niña asymmetry is evaluated in 14 coupled models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The results show that an underestimate of ENSO asymmetry, a common problem noted in CMIP3 models, remains a common problem in CMIP5 coupled models. The weaker ENSO asymmetry in the models primarily results from a weaker SST warm anomaly over the eastern Pacific and a westward shift of the center of the anomaly. In contrast, SST anomalies for the La Niña phase are close to observations.

Corresponding Atmospheric Model Intercomparison Project (AMIP) runs are analyzed to understand the causes of the underestimate of ENSO asymmetry in coupled models. The analysis reveals that during the warm phase, precipitation anomalies are weaker over the eastern Pacific, and westerly wind anomalies are confined more to the west in most models. The time-mean zonal winds are stronger over the equatorial central and eastern Pacific for most models. Wind-forced ocean GCM experiments suggest that the stronger time-mean zonal winds and weaker asymmetry in the interannual anomalies of the zonal winds in AMIP models can both be a contributing factor to a weaker ENSO asymmetry in the corresponding coupled models, but the former appears to be a more fundamental factor, possibly through its impact on the mean state. The study suggests that the underestimate of ENSO asymmetry in the CMIP5 coupled models is at least in part of atmospheric origin.

Corresponding author address: Dr. Tao Zhang, NOAA/ESRL/PSD, 325 Broadway, R/PSD1, Boulder, CO 80305. E-mail: tao.zhang@noaa.gov
Save
  • An, S.-I., 2009: A review of interdecadal changes in the nonlinearity of the El Niño–Southern Oscillation. Theor. Appl. Climatol., 97, 2940, doi:10.1007/s00704-008-0071-z.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, doi:10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., Y.-G. Ham, J.-S. Kug, F.-F. Jin, and I.-S. Kang, 2005: El Niño–La Niña asymmetry in the Coupled Model Intercomparison Project simulations. J. Climate, 18, 26172627, doi:10.1175/JCLI3433.1.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., and D. B. Stephenson, 1999: The “normality” of El Niño. Geophys. Res. Lett., 26, 10271030, doi:10.1029/1999GL900161.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, X. Cao, and B. Giese, 2000: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30, 294309, doi:10.1175/1520-0485(2000)030<0294:ASODAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chung, P.-H., and T. Li, 2013: Interdecadal relationship between the mean state and El Niño types. J. Climate, 26, 361379, doi:10.1175/JCLI-D-12-00106.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Climate, 25, 26222651, doi:10.1175/JCLI-D-11-00301.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and M. A. Cane, 1989: A reduced gravity, primitive equation model of the upper equatorial ocean. J. Comput. Phys., 81, 444480, doi:10.1016/0021-9991(89)90216-7.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., D. Stephenson, and K. Sperber, 2003: Probability-based methods for quantifying nonlinearity in the ENSO. Climate Dyn., 20, 241256, doi:10.1007/s00382-002-0263-7.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S.-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, doi:10.1029/2002GL016356.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and J.-S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., 107, 4372, doi:10.1029/2001JD000393.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and H. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 10691090, doi:10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, D., Y.-S. Jang, D.-H. Kim, Y.-H. Kim, M. Watanabe, F.-F. Jin, and J.-S. Kug, 2011: El Niño–Southern Oscillation sensitivity to cumulus entrainment in a coupled general circulation model. J. Geophys. Res., 116, D22112, doi:10.1029/2011JD016526.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, doi:10.1029/2005GL022738.

    • Search Google Scholar
    • Export Citation
  • Liang, J., X.-Q. Yang, and D.-Z. Sun, 2012: The effect of ENSO events on the tropical Pacific mean climate: Insights from an analytical model. J. Climate, 25, 75907606, doi:10.1175/JCLI-D-11-00490.1.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, doi:10.1175/JCLI4272.1.

    • Search Google Scholar
    • Export Citation
  • McCreary, J., 1976: Eastern tropical ocean response to changing wind systems: With application to El Niño. J. Phys. Oceanogr., 6, 632645, doi:10.1175/1520-0485(1976)006<0632:ETORTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, doi:10.1029/2011GL048275.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, doi:10.1175/2008JCLI2244.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., P. Friederichs, and M. Latif, 2004: Tropical Pacific decadal variability and its relation to decadal modulation of ENSO. J. Climate, 17, 37613774, doi:10.1175/1520-0442(2004)017<3761:TPDVAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and R. J. Burgman, 2006: A simple mechanism for ENSO residuals and asymmetry. J. Climate, 19, 31673179, doi:10.1175/JCLI3765.1.

    • Search Google Scholar
    • Export Citation
  • Su, J., R. Zhang, T. Li, X. Rong, J.-S. Kug, and C.-C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605617, doi:10.1175/2009JCLI2894.1.

    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., 1997: El Niño: A coupled response to radiative heating? Geophys. Res. Lett., 24, 20312034, doi:10.1029/97GL01960.

  • Sun, D.-Z., 2003: A possible effect of an increase in the warm-pool SST on the magnitude of El Niño warming. J. Climate, 16, 185205, doi:10.1175/1520-0442(2003)016<0185:APEOAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., and T. Zhang, 2006: A regulatory effect of ENSO on the time-mean thermal stratification of the equatorial upper ocean. Geophys. Res. Lett., 33, L07710, doi:10.1029/2005GL025384.

    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., and F. Bryan, Eds., 2010: Climate Dynamics: Why Does Climate Vary? Geophys. Monogr., Vol. 189, Amer. Geophys. Union, 216 pp.

  • Sun, D.-Z., T. Zhang, and S.-I. Shin, 2004: The effect of subtropical cooling on the amplitude of ENSO: A numerical study. J. Climate, 17, 37863798, doi:10.1175/1520-0442(2004)017<3786:TEOSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., and Coauthors, 2006: Radiative and dynamical feedbacks over the equatorial cold tongue: Results from nine atmospheric GCMs. J. Climate, 19, 40594074, doi:10.1175/JCLI3835.1.

    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., T. Zhang, Y. Sun, and Y. Yu, 2014: Rectification of El Niño–Southern Oscillation into climate anomalies of decadal and longer time scales: Results from forced ocean GCM experiments. J. Climate, 27, 2545–2561, doi:10.1175/JCLI-D-13-00390.1.

    • Search Google Scholar
    • Export Citation
  • Sun, F., and J.-Y. Yu, 2009: A 10–15-year modulation cycle of ENSO intensity. J. Climate, 22, 17181735, doi:10.1175/2008JCLI2285.1.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., D.-Z. Sun, L. X. Wu, and F. Wang, 2013: Western Pacific warm pool and ENSO asymmetry in CMIP3 models. Adv. Atmos. Sci., 30, 940953, doi:10.1007/s00376-012-2161-1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., S. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1, 8195, doi:10.5194/os-1-81-2005.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., C. Menkes, J.-P. Boulanger, P. Delecluse, E. Guilyardi, M. J. McPhaden, and G. Madec, 2001: A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Niño. J. Phys. Oceanogr., 31, 16491675, doi:10.1175/1520-0485(2001)031<1649:AMSOOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., M. Chikira, Y. Imada, and M. Kimoto, 2011: Convective control of ENSO simulated in MIROC. J. Climate, 24, 543562, doi:10.1175/2010JCLI3878.1.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., D.-Z. Sun, R. Neale, and P. J. Rasch, 2009: An evaluation of ENSO asymmetry in the Community Climate System Models: A view from the subsurface. J. Climate, 22, 59335961, doi:10.1175/2009JCLI2933.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., M. P. Hoerling, J. Perlwitz, D.-Z. Sun, and D. Murray, 2011: Physics of U.S. surface temperature response to ENSO. J. Climate, 24, 48744887, doi:10.1175/2011JCLI3944.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., J. Perlwitz, and M. P. Hoerling, 2014: What is responsible for the strong observed asymmetry in teleconnections between El Niño and La Niña? Geophys. Res. Lett., 41, 10191025, doi:10.1002/2013GL058964.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and M. J. McPhaden, 2006: Wind stress variations and interannual sea surface temperature anomalies in the eastern equatorial Pacific. J. Climate, 19, 226241, doi:10.1175/JCLI3618.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., Z. Sun, and G. Zhou, 2007: A note on the role of meridional wind stress anomalies and heat flux in ENSO simulations. Adv. Atmos. Sci., 24, 729738, doi:10.1007/s00376-007-0729-y.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1789 822 42
PDF Downloads 747 183 3