Surface Air Temperature Changes over the Twentieth and Twenty-First Centuries in China Simulated by 20 CMIP5 Models

Liang Chen Department of Geography, Texas A&M University, College Station, Texas

Search for other papers by Liang Chen in
Current site
Google Scholar
PubMed
Close
and
Oliver W. Frauenfeld Department of Geography, Texas A&M University, College Station, Texas

Search for other papers by Oliver W. Frauenfeld in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Historical temperature variability over China during the twentieth century and projected changes under three emission scenarios for the twenty-first century are evaluated on the basis of a multimodel ensemble of 20 GCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and two observational datasets. Changes relative to phase 3 of the Coupled Model Intercomparison Project (CMIP3) are assessed, and the performance of individual GCMs is also quantified. Compared with observations, GCMs have substantial cold biases over the Tibetan Plateau, especially in the cold season. The timing and location of these biases also correspond to the greatest disagreement among the individual models, indicating GCMs’ limitations in reproducing climatic features in this complex terrain. The CMIP5 multimodel ensemble shows better agreement with observations than CMIP3 in terms of the temperature biases. Both CMIP3 and CMIP5 capture the climatic warming over the twentieth century. However, the magnitude of the annual mean temperature trends is underestimated. There is also limited agreement in the spatial and seasonal patterns of temperature trends over China. Based on six statistical measures, four individual models—the Max Planck Institute Earth System Model, low resolution (MPI-ESM-LR), Second Generation Canadian Earth System Model (CanESM2), Model for Interdisciplinary Research on Climate, Earth System Model (MIROC-ESM), and Community Climate System Model, version 4 (CCSM4)—best represent surface air temperature variability over China. The future temperature projections indicate that the representative concentration pathway (RCP) 8.5 and RCP 4.5 scenarios exhibit a gradual increase in annual temperature during the twenty-first century at a rate of 0.60° and 0.27°C (10 yr)−1, respectively. As the lowest-emission mitigation scenario, RCP 2.6 projects the lowest rate of temperature increase [0.10°C (10 yr)−1]. By the end of the twenty-first century, temperature is projected to increase by 1.7°–5.7°C, with larger warming over northern China and the Tibetan Plateau.

Corresponding author address: Liang Chen, Department of Geography, Texas A&M University, College Station, TX 77843. E-mail: chenliang08@neo.tamu.edu

Abstract

Historical temperature variability over China during the twentieth century and projected changes under three emission scenarios for the twenty-first century are evaluated on the basis of a multimodel ensemble of 20 GCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and two observational datasets. Changes relative to phase 3 of the Coupled Model Intercomparison Project (CMIP3) are assessed, and the performance of individual GCMs is also quantified. Compared with observations, GCMs have substantial cold biases over the Tibetan Plateau, especially in the cold season. The timing and location of these biases also correspond to the greatest disagreement among the individual models, indicating GCMs’ limitations in reproducing climatic features in this complex terrain. The CMIP5 multimodel ensemble shows better agreement with observations than CMIP3 in terms of the temperature biases. Both CMIP3 and CMIP5 capture the climatic warming over the twentieth century. However, the magnitude of the annual mean temperature trends is underestimated. There is also limited agreement in the spatial and seasonal patterns of temperature trends over China. Based on six statistical measures, four individual models—the Max Planck Institute Earth System Model, low resolution (MPI-ESM-LR), Second Generation Canadian Earth System Model (CanESM2), Model for Interdisciplinary Research on Climate, Earth System Model (MIROC-ESM), and Community Climate System Model, version 4 (CCSM4)—best represent surface air temperature variability over China. The future temperature projections indicate that the representative concentration pathway (RCP) 8.5 and RCP 4.5 scenarios exhibit a gradual increase in annual temperature during the twenty-first century at a rate of 0.60° and 0.27°C (10 yr)−1, respectively. As the lowest-emission mitigation scenario, RCP 2.6 projects the lowest rate of temperature increase [0.10°C (10 yr)−1]. By the end of the twenty-first century, temperature is projected to increase by 1.7°–5.7°C, with larger warming over northern China and the Tibetan Plateau.

Corresponding author address: Liang Chen, Department of Geography, Texas A&M University, College Station, TX 77843. E-mail: chenliang08@neo.tamu.edu
Save
  • Annan, J. D., D. J. Lunt, J. C. Hargreaves, and P. J. Valdes, 2005: Parameter estimation in an atmospheric GCM using the ensemble Kalman filter. Nonlinear Processes Geophys., 12, 363371, doi:10.5194/npg-12-363-2005.

    • Search Google Scholar
    • Export Citation
  • Chen, W., Z. Jiang, and L. Li, 2011: Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. J. Climate, 24, 47414756, doi:10.1175/2011JCLI4102.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., G. Ren, Z. Zhao, Y. Xu, Y. Luo, Q. Li, and J. Zhang, 2007: Detection, causes and projection of climate change over China: An overview of recent progress. Adv. Atmos. Sci., 24, 954971, doi:10.1007/s00376-007-0954-4.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., and H. van den Dool, 2008: A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res., 113, D01103, doi:10.1029/2007JD008470.

    • Search Google Scholar
    • Export Citation
  • Gao, J., V. Masson-Delmotte, T. Yao, L. Tian, C. Risi, and G. Hoffmann, 2011: Precipitation water stable isotopes in the south Tibetan plateau: Observations and modeling. J. Climate, 24, 31613178, doi:10.1175/2010JCLI3736.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., X. Bi, and J. S. Pal, 2004: Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Present-day climate (1961–1990). Climate Dyn., 22, 733756, doi:10.1007/s00382-004-0409-x.

    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: 1998: The warmest year on record of the century in China (in Chinese). Meteor. Monogr., 25, 35.

  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2013: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623–642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., S. Yang, and R. Wu, 2003: Long-term climate variations in China and global warming signals. J. Geophys. Res., 108, 4614, doi:10.1029/2003JD003651.

    • Search Google Scholar
    • Export Citation
  • Hua, W., H. Chen, and S. Sun, 2014: Uncertainty in land surface temperature simulation over China by CMIP3/CMIP5 models. Theor. Appl. Climatol., doi:10.1007/s00704-013-1020-z, in press.

    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2007: An inter-comparison of regional climate models for Europe: Model performance in present-day climate. Climatic Change, 81, 3152, doi:10.1007/s10584-006-9213-4.

    • Search Google Scholar
    • Export Citation
  • Ji, Z., and S. Kang, 2013: Double-nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios. J. Atmos. Sci., 70, 12781290, doi:10.1175/JAS-D-12-0155.1.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 14191444, doi:10.1175/JCLI4066.1.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and J. Sedlacek, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, doi:10.1038/nclimate1716.

    • Search Google Scholar
    • Export Citation
  • Kumar, S., V. Merwade, J. L. Kinter, and D. Niyogi, 2013: Evaluation of temperature and precipitation trends and long-term persistence in CMIP5 20th century climate simulations. J. Climate, 26, 41684185, doi:10.1175/JCLI-D-12-00259.1.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and C. J. Willmott, 1990a: Mean seasonal and spatial variability in global surface air temperature. Theor. Appl. Climatol., 41, 1121, doi:10.1007/BF00866198.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and C. J. Willmott, 1990b: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111127, doi:10.1002/joc.3370100202.

    • Search Google Scholar
    • Export Citation
  • Li, H., L. Feng, and T. Zhou, 2011: Multi-model projection of July–August climate extreme changes over China under CO2 doubling. Part II: Temperature. Adv. Atmos. Sci., 28, 448463, doi:10.1007/s00376-010-0052-x.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: THE WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Miao, C., Q. Duan, L. Yang, and A. G. L. Borthwick, 2012: On the applicability of temperature and precipitation data from CMIP3 for China. PLoS ONE, 7, e44659, doi:10.1371/journal.pone.0044659.

    • Search Google Scholar
    • Export Citation
  • Qian, W., and A. Qin, 2006: Spatial-temporal characteristics of temperature variation in China. Meteor. Atmos. Phys., 93, 116, doi:10.1007/s00703-005-0163-6.

    • Search Google Scholar
    • Export Citation
  • Ren, G., Y. Ding, Z. Zhao, J. Zheng, T. Wu, G. Tang, and Y. Xu, 2012: Recent progress in studies of climate change in China. Adv. Atmos. Sci., 29, 958977, doi:10.1007/s00376-012-1200-2.

    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2011: RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 3357, doi:10.1007/s10584-011-0149-y.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. M. B. Tignor, and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Su, F., X. Duan, D. Chen, Z. Hao, and L. Cuo, 2013: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Climate, 26, 31873208, doi:10.1175/JCLI-D-12-00321.1.

    • Search Google Scholar
    • Export Citation
  • Tang, G., and G. Ren, 2005: Reanalysis of surface air temperature change of the last 100 years over China (in Chinese). Climatic Environ. Res., 10, 791798.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thomson, A., and Coauthors, 2011: RCP4.5: A pathway for stabilization of radiative forcing by 2100. Climatic Change, 109, 7794, doi:10.1007/s10584-011-0151-4.

    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., and Coauthors, 2008: Temperature increase of twenty-first century mitigation scenarios. Proc. Natl. Acad. Sci. USA, 105, 15 25815 262, doi:10.1073/pnas.0711129105.

    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • Wang, G., S. Sun, and R. Mei, 2011: Vegetation dynamics contributes to the multi-decadal variability of precipitation in the Amazon region. Geophys. Res. Lett., 38, L19703, doi:10.1029/2011GL049017.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014: A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int. J. Climatol., doi:10.1002/joc.3822, in press.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and D. Gong, 2000: Enhancement of the warming trend in China. Geophys. Res. Lett., 27, 25812584, doi:10.1029/1999GL010825.

  • Wang, S., J. Ye, D. Gong, J. Zhu, and T. Yao, 1998: Construction of mean annual temperature series for the last one hundred years in China (in Chinese). Quart. J. Appl. Meteor., 9, 392401.

    • Search Google Scholar
    • Export Citation
  • Wang, S., D. Gong, and J. Zhu, 2001: Twentieth-century climatic warming in China in the context of the Holocene. Holocene, 11, 313321, doi:10.1191/095968301673172698.

    • Search Google Scholar
    • Export Citation
  • Wang, X., F. Chen, E. Hasi, and J. Li, 2008: Desertification in China: An assessment. Earth Sci. Rev., 88, 188206, doi:10.1016/j.earscirev.2008.02.001.

    • Search Google Scholar
    • Export Citation
  • Wild, M., 2009: How well do IPCC-AR4/CMIP3 climate models simulate global dimming/brightening and twentieth-century daytime and nighttime warming? J. Geophys. Res., 114, D00D11, doi:10.1029/2008JD011372.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and S. M. Robeson, 1995: Climatologically aided interpolation (CAI) of terrestrial air temperature. Int. J. Climatol., 15, 221229, doi:10.1002/joc.3370150207.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., X. Gao, Y. Shen, C. Xu, Y. Shi, and F. Giorgi, 2009: A daily temperature dataset over China and its application in validating a RCM simulation. Adv. Atmos. Sci., 26, 763772, doi:10.1007/s00376-009-9029-z.

    • Search Google Scholar
    • Export Citation
  • Yao, T., J. Pu, A. Lu, Y. Wang, and W. Yu, 2007: Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct. Antarct. Alp. Res., 39, 642650, doi:10.1657/1523-0430(07-510)[YAO]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, R., B. Wang, and T. Zhou, 2004: Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau. J. Climate, 17, 27022713, doi:10.1175/1520-0442(2004)017<2702:CEOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., S. Wang, Y. Xu, G. Ren, Y. Luo, and X. Gao, 2005: Attribution of the 20th century climate warming in China (in Chinese). Climatic Environ. Res., 10, 808817.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and Z. Li, 2002: Simulation of the East Asian summer monsoon using a variable resolution atmospheric GCM. Climate Dyn., 19, 167180, doi:10.1007/s00382-001-0214-8.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and R. Yu, 2006: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19, 58435858, doi:10.1175/JCLI3952.1.

    • Search Google Scholar
    • Export Citation