Comparison of Seasonal Potential Predictability of Precipitation

Xia Feng Department of Geography and Geoinformation Science, George Mason University, Fairfax, Virginia

Search for other papers by Xia Feng in
Current site
Google Scholar
PubMed
Close
,
Timothy DelSole Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia

Search for other papers by Timothy DelSole in
Current site
Google Scholar
PubMed
Close
, and
Paul Houser Department of Geography and Geoinformation Science, George Mason University, Fairfax, Virginia

Search for other papers by Paul Houser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Three methods for estimating potential seasonal predictability of precipitation from a single realization of daily data are assessed. The estimation methods include a first-order Markov chain model proposed by Katz (KZ), and an analysis of covariance (ANOCOVA) method and a bootstrap method proposed by the authors. The assessment is based on Monte Carlo experiments, ensemble atmospheric general circulation model (AGCM) simulations, and observation-based data. For AGCM time series, ANOCOVA produces the most accurate estimates of weather noise variance, despite the fact that it makes the most unrealistic assumptions about precipitation (in particular, it assumes precipitation is generated by a Gaussian autoregressive model). The KZ method significantly underestimates noise variance unless the autocorrelation of precipitation amounts on consecutive wet days is taken into account. Both AGCM and observation-based data reveal that the fraction of potentially predictable variance is greatest in the tropics, smallest in the extratropics, and undergoes a strong seasonal variation. The three methods give consistent estimates of potential predictability for 67% of the globe.

Corresponding author address: Xia Feng, Department of Geography and Geoinformation Science, George Mason University, 4400 University Dr., MS 6C3, Fairfax, VA 22030. E-mail: xfeng@gmu.edu

Abstract

Three methods for estimating potential seasonal predictability of precipitation from a single realization of daily data are assessed. The estimation methods include a first-order Markov chain model proposed by Katz (KZ), and an analysis of covariance (ANOCOVA) method and a bootstrap method proposed by the authors. The assessment is based on Monte Carlo experiments, ensemble atmospheric general circulation model (AGCM) simulations, and observation-based data. For AGCM time series, ANOCOVA produces the most accurate estimates of weather noise variance, despite the fact that it makes the most unrealistic assumptions about precipitation (in particular, it assumes precipitation is generated by a Gaussian autoregressive model). The KZ method significantly underestimates noise variance unless the autocorrelation of precipitation amounts on consecutive wet days is taken into account. Both AGCM and observation-based data reveal that the fraction of potentially predictable variance is greatest in the tropics, smallest in the extratropics, and undergoes a strong seasonal variation. The three methods give consistent estimates of potential predictability for 67% of the globe.

Corresponding author address: Xia Feng, Department of Geography and Geoinformation Science, George Mason University, 4400 University Dr., MS 6C3, Fairfax, VA 22030. E-mail: xfeng@gmu.edu
Save
  • Alessandri, A., A. Borrelli, A. Navarra, A. Arribas, M. Déqué, P. Rogel, and A. Weisheimer, 2011: Evaluation of probabilistic quality and value of the ENSEMBLES multimodel seasonal forecasts: Comparison with DEMETER. Mon. Wea. Rev., 139, 581607, doi:10.1175/2010MWR3417.1.

    • Search Google Scholar
    • Export Citation
  • Becker, E. J., E. H. Berbery, and R. W. Higgins, 2009: Understanding the characteristics of daily precipitation over the United States using the North American Regional Reanalysis. J. Climate, 22, 62686286, doi:10.1175/2009JCLI2838.1.

    • Search Google Scholar
    • Export Citation
  • Chervin, R. M., 1986: Interannual variability and seasonal climate predictability. J. Atmos. Sci., 43, 233251, doi:10.1175/1520-0469(1986)043<0233:IVASCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chin, E. H., 1977: Modeling daily precipitation occurrence process with Markov chain. Water Resour. Res., 13, 946956, doi:10.1029/WR013i006p00949.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., and X. Feng, 2013: The “Shukla–Gutzler” method for estimating potential seasonal predictability. Mon. Wea. Rev., 141, 822831, doi:10.1175/MWR-D-12-00007.1.

    • Search Google Scholar
    • Export Citation
  • Feng, X., T. DelSole, and P. Houser, 2011: Bootstrap estimated seasonal potential predictability of global temperature and precipitation. Geophys. Res. Lett.,38, L07702, doi:10.1029/2010GL046511.

  • Feng, X., T. DelSole, and P. Houser, 2012: Methods for estimating seasonal potential predictability: Analysis of covariance. J. Climate, 25, 52925308, doi:10.1175/JCLI-D-11-00342.1.

    • Search Google Scholar
    • Export Citation
  • Feng, X., T. DelSole, and P. Houser, 2013: Comparison of statistical estimates of potential seasonal predictability. J. Geophys. Res. Atmos.,118, 6002–6016, doi:10.1002/jgrd.50498.

  • Frederiksen, C. S., and X. Zheng, 2007: Variability of seasonal-mean fields arising from interaseasonal variability. Part 3: Application to SH winter and summer circulations. Climate Dyn., 28, 849866, doi:10.1007/s00382-006-0214-9.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., 1977: An application of chain-dependent processes to meteorology. J. Appl. Probab., 14, 598603.

  • Katz, R. W., 1983: Statistical procedures for making inferences about precipitation changes simulated by an atmospheric general circulation model. J. Atmos. Sci., 40, 21932201, doi:10.1175/1520-0469(1983)040<2193:SPFMIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and M. B. Parlange, 1995: Generalizations of chain-dependent process: Application to hourly precipitation. Water Resour. Res., 31, 13311341, doi:10.1029/94WR03152.

    • Search Google Scholar
    • Export Citation
  • Klugman, M. R., 1983: Evidence of climate change in United States seasonal precipitation data, 1948–76. J. Climate Appl. Meteor., 22, 13671376, doi:10.1175/1520-0450(1983)022<1367:EOCCIU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klugman, M. R., and S. A. Klugman, 1981: A method for determining change in precipitation data. J. Appl. Meteor., 20, 15061509, doi:10.1175/1520-0450(1981)020<1506:AMFDCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and prediction. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Chen, L. Zhang, W. Wang, Y. Xue, C. Wen, L. Marx, and B. Huang, 2012: An analysis of the nonstationarity in the bias of sea surface temperature forecasts for the NCEP Climate Forecast System (CFS) version 2. Mon. Wea. Rev., 140, 30033016, doi:10.1175/MWR-D-11-00335.1.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1973: The standard error of time-average estimates of climatic means. J. Appl. Meteor., 12, 10661069, doi:10.1175/1520-0450(1973)012<1066:TSEOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

  • Madden, R. A., 1976: Estimates of the natural variability of time-averaged sea-level pressure. Mon. Wea. Rev.,104, 942–952, doi:10.1175/1520-0493(1976)104<0942:EOTNVO>2.0.CO;2.

  • Madden, R. A., and D. J. Shea, 1982: Potential long-range predictability of precipitation over North America. Proc. Seventh Climate Diagnostics Workshop, Washington, DC, NOAA, 423426.

  • Madden, R. A., D. J. Shea, R. W. Katz, and J. W. Kidson, 1999: The potential long-range predictability of precipitation over New Zealand. Int. J. Climatol., 19, 405421, doi:10.1002/(SICI)1097-0088(19990330)19:4<405::AID-JOC355>3.0.CO;2-U.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and D. L. T. Anderson, 1994: The prospects for seasonal forecasting—A review paper. Quart. J. Roy. Meteor. Soc., 120, 755793, doi:10.1002/qj.49712051802.

    • Search Google Scholar
    • Export Citation
  • Richardson, C. W., 1981: Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res., 17, 182190, doi:10.1029/WR017i001p00182.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 1998: Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J. Climate, 11, 109120, doi:10.1175/1520-0442(1998)011<0109:APSPWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., C. K. Folland, K. Maskell, and M. N. Ward, 1995: Variability of summer rainfall over tropical North Africa (1906–92): Observations and modeling. Quart. J. Roy. Meteor. Soc., 121, 669704, doi:10.1002/qj.49712152311.

    • Search Google Scholar
    • Export Citation
  • Searle, S. R., G. Casella, and C. E. McCulloch, 1992: Variance Components. John Wiley and Sons, 501 pp.

  • Singh, S. V., and R. H. Kripalani, 1986: Potential predictability of lower-tropospheric monsoon circulation and rainfall over India. Mon. Wea. Rev., 114, 758763, doi:10.1175/1520-0493(1986)114<0758:PPOLTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thom, H. C. S., 1958: A note on the gamma distribution. Mon. Wea. Rev., 86, 117122, doi:10.1175/1520-0493(1958)086<0117:ANOTGD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., P. Peng, A. Johansson, M. Chelliah, A. Shabbar, and S. Saha, 2006: Seasonal-to-decadal predictability and prediction of North American climate—The Atlantic influence. J. Climate, 19, 60056024, doi:10.1175/JCLI3942.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, J. S., and J. Shukla, 2013: The role of air–sea coupling in seasonal prediction of Asia–Pacific summer monsoon rainfall. J. Climate, 26, 56895697, doi:10.1175/JCLI-D-13-00190.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 168 46 1
PDF Downloads 101 26 1