Nonlinear Feedbacks Associated with the Indian Ocean Dipole and Their Response to Global Warming in the GFDL-ESM2M Coupled Climate Model

Benjamin Ng School of Earth Sciences, University of Melbourne, Parkville, and CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

Search for other papers by Benjamin Ng in
Current site
Google Scholar
PubMed
Close
,
Wenju Cai CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

Search for other papers by Wenju Cai in
Current site
Google Scholar
PubMed
Close
, and
Kevin Walsh School of Earth Sciences, University of Melbourne, Parkville, Victoria, Australia

Search for other papers by Kevin Walsh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A feature of the Indian Ocean dipole (IOD) is its positive skewness, with cold IOD east pole (IODE) sea surface temperature anomalies (SSTAs) exhibiting larger amplitudes than warm SSTAs. Using the coupled Geophysical Fluid Dynamics Laboratory Earth System Model with Modular Ocean Model version 4 (MOM4) component (GFDL-ESM2M), the role of nonlinear feedbacks in generating this positive skewness is investigated and their response to global warming examined. These feedbacks are a nonlinear dynamic heating process, the Bjerknes feedback, wind–evaporation–SST feedback, and SST–cloud–radiation feedback. Nonlinear dynamic heating assists IOD skewness by strongly damping warm IODE SSTAs and reinforcing cold IODE anomalies. In a warmer climate, the damping strengthens while the reinforcement weakens. The SST–thermocline relationship is part of the positive Bjerknes feedback and contributes strongly to IOD skewness as it is weak during the development of warm IODE SSTAs, but strong during the development of cold IODE SSTAs. In response to global warming, this relationship displays weaker asymmetry associated with weaker westerly winds over the central equatorial Indian Ocean. The negative SST–cloud–radiation feedback is also asymmetric with cold IODE SSTAs less damped by incoming shortwave radiation. Under global warming, the damping of cold IODE SSTAs shows little change but warm IODE SSTAs become more damped. This stronger damping is a symptom of negative IODs becoming stronger in amplitude due to the mean IODE thermocline shoaling. The wind–evaporation–SST feedback does not contribute to IOD asymmetry with cold IODE SSTAs decreasing evaporation, which in turn warms the surface. However, as this study focuses on one model, the response of these feedbacks to global warming is uncertain.

Corresponding author address: Benjamin Ng, CSIRO Marine and Atmospheric Research, PMB1, Aspendale, VIC 3195, Australia. E-mail: benjamin.ng@csiro.au

Abstract

A feature of the Indian Ocean dipole (IOD) is its positive skewness, with cold IOD east pole (IODE) sea surface temperature anomalies (SSTAs) exhibiting larger amplitudes than warm SSTAs. Using the coupled Geophysical Fluid Dynamics Laboratory Earth System Model with Modular Ocean Model version 4 (MOM4) component (GFDL-ESM2M), the role of nonlinear feedbacks in generating this positive skewness is investigated and their response to global warming examined. These feedbacks are a nonlinear dynamic heating process, the Bjerknes feedback, wind–evaporation–SST feedback, and SST–cloud–radiation feedback. Nonlinear dynamic heating assists IOD skewness by strongly damping warm IODE SSTAs and reinforcing cold IODE anomalies. In a warmer climate, the damping strengthens while the reinforcement weakens. The SST–thermocline relationship is part of the positive Bjerknes feedback and contributes strongly to IOD skewness as it is weak during the development of warm IODE SSTAs, but strong during the development of cold IODE SSTAs. In response to global warming, this relationship displays weaker asymmetry associated with weaker westerly winds over the central equatorial Indian Ocean. The negative SST–cloud–radiation feedback is also asymmetric with cold IODE SSTAs less damped by incoming shortwave radiation. Under global warming, the damping of cold IODE SSTAs shows little change but warm IODE SSTAs become more damped. This stronger damping is a symptom of negative IODs becoming stronger in amplitude due to the mean IODE thermocline shoaling. The wind–evaporation–SST feedback does not contribute to IOD asymmetry with cold IODE SSTAs decreasing evaporation, which in turn warms the surface. However, as this study focuses on one model, the response of these feedbacks to global warming is uncertain.

Corresponding author address: Benjamin Ng, CSIRO Marine and Atmospheric Research, PMB1, Aspendale, VIC 3195, Australia. E-mail: benjamin.ng@csiro.au
Save
  • An, S.-I., 2009: A review of interdecadal changes in the nonlinearity of the El Niño–Southern Oscillation. Theor. Appl. Climatol., 97, 2940, doi:10.1007/s00704-008-0071-z.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, doi:10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, 1821, doi:10.1029/2003GL017926.

    • Search Google Scholar
    • Export Citation
  • Behringer, D., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Ocean, and Land Surface, Seattle, WA, Amer. Meteor. Soc., 2.3. [Available online at https://ams.confex.com/ams/pdfpapers/70720.pdf.]

  • Black, E., J. Slingo, and K. R. Sperber, 2003: An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Wea. Rev., 131, 7494, doi:10.1175/1520-0493(2003)131<0074:AOSOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2013: Why is the amplitude of the Indian Ocean dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett., 40, 12001205, doi:10.1002/grl.50208.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Y. Qiu, 2013: An observation-based assessment of nonlinear feedback processes associated with the Indian Ocean dipole. J. Climate, 26, 28802890, doi:10.1175/JCLI-D-12-00483.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon, 2012: An asymmetry in the IOD and ENSO teleconnection pathway and its impact on Australian climate. J. Climate, 25, 63186329, doi:10.1175/JCLI-D-11-00501.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., X.-T. Zheng, E. Weller, M. Collins, T. Cowan, M. Lengaigne, W. Yu, and T. Yamagata, 2013: Projected response of the Indian Ocean Dipole to greenhouse warming. Nat. Geosci., 6, 999–1007, doi:10.1038/ngeo2009.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, X. Cao, and B. Giese, 2000: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30, 294309, doi:10.1175/1520-0485(2000)030<0294:ASODAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • Fischer, A. S., P. Terray, E. Guilyardi, S. Gualdi, and P. Delecluse, 2005: Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J. Climate, 18, 34283449, doi:10.1175/JCLI3478.1.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2009: Elements of MOM4p1. GFDL Ocean Group Tech. Rep. 6, 377 pp. [Available online at http://data1.gfdl.noaa.gov/~arl/pubrel/o/old/doc/mom4p1_guide.pdf.]

  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579, doi:10.5194/os-1-45-2005.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., and T. Li, 2010: Independence of SST skewness from thermocline feedback in the eastern equatorial Indian Ocean. Geophys. Res. Lett., 37, L11702, doi:10.1029/2010GL043380.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., T. Li, LinHo, and J.-S. Kug, 2008a: Asymmetry of the Indian Ocean dipole. Part I: Observational analysis. J. Climate, 21, 48344848, doi:10.1175/2008JCLI2222.1.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., T. Li, and J.-J. Luo, 2008b: Asymmetry of the Indian Ocean dipole. Part II: Model diagnosis. J. Climate, 21, 48494858, doi:10.1175/2008JCLI2223.1.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., M.-M. Lu, and M. Kanamitsu, 2008c: Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO. J. Geophys. Res., 113, D08107, doi:10.1029/2007JD009151.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S.-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett.,30, 1120, doi:10.1029/2002gl016356.

  • Li, T., B. Wang, C.-P. Chang, and Y. Zhang, 2003: A theory for the Indian Ocean dipole-zonal mode. J. Atmos. Sci., 60, 21192135, doi:10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, L., W. Yu, and T. Li, 2011: Dynamic and thermodynamic air–sea coupling associated with the Indian Ocean dipole diagnosed from 23 WCRP CMIP3 models. J. Climate, 24, 49414958, doi:10.1175/2011JCLI4041.1.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Ogata, T., S.-P. Xie, J. Lan, and X.-T. Zheng, 2013: Importance of ocean dynamics for the skewness of the Indian Ocean dipole mode. J. Climate, 26, 21452159, doi:10.1175/JCLI-D-11-00615.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS observations. J. Climate, 16, 27352751, doi:10.1175/1520-0442(2003)016<2735:SOSASW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Song, Q., G. A. Vecchi, and A. J. Rosati, 2007: Indian Ocean variability in the GFDL coupled climate model. J. Climate, 20, 28952916, doi:10.1175/JCLI4159.1.

    • Search Google Scholar
    • Export Citation
  • Spencer, H., R. T. Sutton, J. M. Slingo, M. Roberts, and E. Black, 2005: Indian Ocean climate and dipole variability in Hadley Centre coupled GCMs. J. Climate, 18, 22862307, doi:10.1175/JCLI3410.1.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., M. H. England, P. C. McIntosh, G. A. Meyers, M. J. Pook, J. S. Risbey, A. S. Gupta, and A. S. Taschetto, 2009: What causes southeast Australia’s worst droughts? Geophys. Res. Lett., 36, L04706, doi:10.1029/2008GL036801.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., S.-P. Xie, G. A. Vecchi, Q. Liu, and J. Hafner, 2010: Indian Ocean dipole response to global warming: Analysis of ocean–atmospheric feedbacks in a coupled model. J. Climate, 23, 12401253, doi:10.1175/2009JCLI3326.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., S.-P. Xie, Y. Du, L. Liu, G. Huang, and Q. Liu, 2013: Indian Ocean dipole response to global warming in the CMIP5 multimodel ensemble. J. Climate, 26, 60676080, doi:10.1175/JCLI-D-12-00638.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 309 93 4
PDF Downloads 212 59 6