A Simple Model of the Northeast Pacific Stratocumulus to Cumulus Transition Based on the Climatological Surface Energy Budget

Johannes Karlsson Department of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by Johannes Karlsson in
Current site
Google Scholar
PubMed
Close
and
João Teixeira Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by João Teixeira in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Air advected equatorward by the trade winds off the coast of California is associated with decreasing cloud cover and is subjected to increasingly warmer sea surface temperatures. These gradients imply large gradients in the surface energy fluxes. Based on the surface energy balance and on the assumption of a small net surface energy flux, which is supported by reanalysis data, a cloud cover model of the climatological stratocumulus to cumulus transition in the northeastern subtropical Pacific Ocean is developed. Using climatological meteorological surface variables, the model, despite its simplicity, is able to describe the transition from stratocumulus to cumulus reasonably well in terms of cloud cover.

Corresponding author address: Johannes Karlsson, Department of Meteorology, Stockholm University, 106 91 Stockholm, Sweden. E-mail: johannes@misu.su.se

Abstract

Air advected equatorward by the trade winds off the coast of California is associated with decreasing cloud cover and is subjected to increasingly warmer sea surface temperatures. These gradients imply large gradients in the surface energy fluxes. Based on the surface energy balance and on the assumption of a small net surface energy flux, which is supported by reanalysis data, a cloud cover model of the climatological stratocumulus to cumulus transition in the northeastern subtropical Pacific Ocean is developed. Using climatological meteorological surface variables, the model, despite its simplicity, is able to describe the transition from stratocumulus to cumulus reasonably well in terms of cloud cover.

Corresponding author address: Johannes Karlsson, Department of Meteorology, Stockholm University, 106 91 Stockholm, Sweden. E-mail: johannes@misu.su.se
Save
  • Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Scubert, and A. Shelby Frisch, 1995: The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889904, doi:10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., M. A. Ringer, J. A. Pamment, and A. Slingo, 2004: Simulation of the Earth’s radiation budget by the European Centre for Medium-Range Weather Forecasts 40-year reanalysis (ERA40). J. Geophys. Res.,109, D18107, doi:10.1029/2004JD004816.

  • Anderson, E. R., 1952: Energy budget studies. U.S. Geol. Surv. Circ., 229, 71119.

  • Bender, F. A.-M., R. J. Charlson, A. M.-L. Ekman, and L. Leahy, 2011: Quantification of monthly mean, regional-scale albedo of marine stratiform clouds in satellite observations and gcms. J. Appl. Meteor. Climatol., 50, 21392148, doi:10.1175/JAMC-D-11-049.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett.,32, L20806, doi:10.1029/2005GL023851.

  • Bretherton, C. S., and M. C. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148167, doi:10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 24342455, doi:10.1175/1520-0469(1994)051<2434:TAOFSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chung, D., and J. Teixeira, 2012: A simple model for stratocumulus to shallow cumulus cloud transitions. J. Climate, 25, 25472554, doi:10.1175/JCLI-D-11-00105.1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37, 131147, doi:10.1175/1520-0469(1980)037<0131:CTEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick, 1996: Air–sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results. J. Geophys. Res., 101, 12 00112 016, doi:10.1029/95JC03796.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., C. W. Fairall, D. E. Wolfe, L. Bariteau, and P. Zuidema, 2010: Surface flux observations on the southeastern tropical Pacific Ocean and attribution of SST errors in coupled ocean–atmosphere models. J. Climate, 23, 41524174, doi:10.1175/2010JCLI3411.1.

    • Search Google Scholar
    • Export Citation
  • Fu, C., R. Pyle, and H. Fan, 1994: A comparison study of the climatological air–sea heat fluxes estimated by different computational schemes of bulk formula. Adv. Atmos. Sci., 11, 189200, doi:10.1007/BF02666545.

    • Search Google Scholar
    • Export Citation
  • Fung, I. Y., D. E. Harrison, and A. A. Lacis, 1984: On the variability of the net longwave radiation at the ocean surface. Rev. Geophys. Space Phys., 22, 177193, doi:10.1029/RG022i002p00177.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., W. F. Staylor, W. L. Darnell, A. C. Wilber, and N. A. Ritchey, 1993: Seasonal variation of surface and atmospheric cloud radiative forcing over the globe derived from satellite data. J. Geophys. Res.,98 (D11), 20 761–20 778, doi:10.1029/93JD01533.

  • Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res., 95, 18 68718 703, doi:10.1029/JD095iD11p18687.

    • Search Google Scholar
    • Export Citation
  • Kållberg, P., P. Berrisford, B. Hoskins, A. Simmmons, S. Uppala, S. Lamy-Thépaut, and R. Hine, 2005: ERA-40 Atlas. ERA-40 Project Rep. 19, ECMWF, 191 pp. [Available online at http://www.ecmwf.int/research/era/ERA-40_Atlas/.]

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karlsson, J., G. Svensson, S. Cardoso, J. Teixeira, and S. Paradise, 2010: Subtropical cloud-regime transitions: Boundary layer depth and cloud-top height evolution in models and observations. J. Appl. Meteor. Climatol., 49, 18451858, doi:10.1175/2010JAMC2338.1.

    • Search Google Scholar
    • Export Citation
  • Kawai, H., and J. Teixeira, 2010: Probability density functions of liquid water path and cloud amount of marine boundary layer clouds: Geographical and seasonal variations and controlling meteorological factors. J. Climate, 23, 20792092, doi:10.1175/2009JCLI3070.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., G. T. McLean, and Q. Fu, 1995: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part I: Boundary-layer structure. J. Atmos. Sci., 52, 28392850, doi:10.1175/1520-0469(1995)052<2839:NSOTST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., and W. H. Schubert, 1988: Stability of cloud-topped boundary layers. Quart. J. Roy. Meteor. Soc., 114, 887916, doi:10.1002/qj.49711448204.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, doi:10.1002/qj.49709440106.

    • Search Google Scholar
    • Export Citation
  • Lin, W., M. Zhang, and N. G. Loeb, 2009: Seasonal variation of the physical properties of marine boundary layer clouds off the California coast. J. Climate, 22, 26242638, doi:10.1175/2008JCLI2478.1.

    • Search Google Scholar
    • Export Citation
  • Mauger, G. S., and J. R. Norris, 2010: Assessing the impact of meteorological history on subtropical cloud fraction. J. Climate, 23, 29262940, doi:10.1175/2010JCLI3272.1.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. Springer-Verlag, 520 pp.

  • Pielke, R. A., 1984: Mesoscale Meteorological Modeling. International Geophysics Series, Vol. 78, Academic Press, 612 pp.

  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37, 125130, doi:10.1175/1520-0469(1980)037<0125:CIOTFK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sandu, I., B. Stevens, and R. Pincus, 2010: On the transitions in marine boundary layer cloudiness. Atmos. Chem. Phys., 10, 23772391, doi:10.5194/acp-10-2377-2010.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, doi:10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2004: Cloud representation in general-circulation models over the northern Pacific Ocean: A EUROCS intercomparison study. Quart. J. Roy. Meteor. Soc., 130, 32453267, doi:10.1256/qj.03.146.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1990: Sensitivity of the Earth’s radiation budget to changes in low clouds. Nature, 343, 4951, doi:10.1038/343049a0.

  • Stevens, B., 2000: Cloud transitions and decoupling in shear-free stratocumulus-topped boundary layers. Geophys. Res. Lett., 27, 25572560, doi:10.1029/1999GL011257.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev.,133, 1443–1462, doi:10.1175/MWR2930.1.

  • Taylor, J. P., J. M. Edwards, M. D. Glew, P. Hignett, and A. Slingo, 1996: Studies with a flexible new radiation code. II: Comparisons with aircraft short-wave observations. Quart. J. Roy. Meteor. Soc., 122, 839861, doi:10.1002/qj.49712253204.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and Coauthors, 2011: Tropical and subtropical cloud transitions in weather and climate prediction models: The GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI). J. Climate, 24, 52235256, doi:10.1175/2011JCLI3672.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc.,90, 311–323, doi:10.1175/2008BAMS2634.1.

  • Trenberth, K. E., and Coauthors, 2010: Atmospheric reanalyses: A major resource for ocean product development and modeling. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, Vol. 2, J. Hall, D. Harrison, and D. Stammer, Eds., ESA WP-306, doi:10.5270/OceanObs09.cwp.90.

  • Turner, D. D., and Coauthors, 2007: Thin liquid water clouds: Their importance and our challenge. Bull. Amer. Meteor. Soc.,88, 177–190, doi:10.1175/BAMS-88-2-177.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • von Engeln, A., and J. Teixeira, 2013: A planetary boundary layer height climatology derived from ECMWF reanalysis data. J. Climate, 26, 65756590, doi:10.1175/JCLI-D-12-00385.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine low cloud: The importance of mesoscale cellular convection. J. Climate,19, 1748–1764, doi:10.1175/JCLI3702.1.

  • Woodruff, S., and Coauthors, 2011: ICOADS release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951–967, doi:10.1002/joc.2103.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci., 54, 168192, doi:10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., and D. A. Randall, 2008: Large-eddy simulation of evaporatively driven entrainment in cloud-topped mixed layers. J. Atmos. Sci., 65, 14811504, doi:10.1175/2007JAS2438.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc.,88, 527–539, doi:10.1175/BAMS-88-4-527.

  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res.,109, D19105, doi:10.1029/2003JD004457.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 108 30 2
PDF Downloads 62 18 6