Characteristics of Precipitation Features and Annual Rainfall during the TRMM Era in the Central Andes

Karen I. Mohr Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Karen I. Mohr in
Current site
Google Scholar
PubMed
Close
,
Daniel Slayback Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, and Science Systems and Applications, Inc., Greenbelt, Maryland

Search for other papers by Daniel Slayback in
Current site
Google Scholar
PubMed
Close
, and
Karina Yager Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, and Science Systems and Applications, Inc., Greenbelt, Maryland

Search for other papers by Karina Yager in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The central Andes extends from 7° to 21°S, with its eastern boundary defined by elevation (1000 m and greater) and its western boundary by the coastline. The authors used a combination of surface observations, reanalysis, and the University of Utah Tropical Rainfall Measuring Mission (TRMM) precipitation features (PF) database to understand the characteristics of convective systems and associated rainfall in the central Andes during the TRMM era, 1998–2012. Compared to other dry (West Africa), mountainous (Himalayas), and dynamically linked (Amazon) regions in the tropics, the central Andes PF population was distinct from these other regions, with small and weak PFs dominating its cumulative distribution functions and annual rainfall totals. No more than 10% of PFs in the central Andes met any of the thresholds used to identify and define deep convection (minimum IR cloud-top temperatures, minimum 85-GHz brightness temperature, maximum height of the 40-dBZ echo). For most of the PFs, available moisture was limited (<35 mm) and instability low (<500 J kg−1). The central Andes represents a largely stable, dry to arid environment, limiting system development and organization. Hence, primarily short-duration events (<60 min) characterized by shallow convection and light to light–moderate rainfall rates (0.5–4.0 mm h−1) were found.

Corresponding author address: Karen I. Mohr, Mesoscale Atmospheric Processes Laboratory, Code 612, NASA Goddard Space Flight Center, Greenbelt, MD 20771. E-mail: karen.mohr-1@nasa.gov

Abstract

The central Andes extends from 7° to 21°S, with its eastern boundary defined by elevation (1000 m and greater) and its western boundary by the coastline. The authors used a combination of surface observations, reanalysis, and the University of Utah Tropical Rainfall Measuring Mission (TRMM) precipitation features (PF) database to understand the characteristics of convective systems and associated rainfall in the central Andes during the TRMM era, 1998–2012. Compared to other dry (West Africa), mountainous (Himalayas), and dynamically linked (Amazon) regions in the tropics, the central Andes PF population was distinct from these other regions, with small and weak PFs dominating its cumulative distribution functions and annual rainfall totals. No more than 10% of PFs in the central Andes met any of the thresholds used to identify and define deep convection (minimum IR cloud-top temperatures, minimum 85-GHz brightness temperature, maximum height of the 40-dBZ echo). For most of the PFs, available moisture was limited (<35 mm) and instability low (<500 J kg−1). The central Andes represents a largely stable, dry to arid environment, limiting system development and organization. Hence, primarily short-duration events (<60 min) characterized by shallow convection and light to light–moderate rainfall rates (0.5–4.0 mm h−1) were found.

Corresponding author address: Karen I. Mohr, Mesoscale Atmospheric Processes Laboratory, Code 612, NASA Goddard Space Flight Center, Greenbelt, MD 20771. E-mail: karen.mohr-1@nasa.gov
Save
  • Amitai, E., C. L. Unkrich, D. C. Goodrich, E. Habib, and B. Thill, 2012: Assessing satellite-based rainfall estimates in semiarid watersheds using the USDA-ARS Walnut Gulch gauge network and TRMM PR. J. Hydrometeor., 13, 15791588, doi:10.1175/JHM-D-12-016.1.

    • Search Google Scholar
    • Export Citation
  • Balme, M., T. Vischel, T. Lebel, C. Peugeot, and S. Galle, 2006: Assessing the water balance in the Sahel: Impact of small scale rainfall variability on runoff: Part 1: Rainfall variability analysis. J. Hydrol., 331, 336348, doi:10.1016/j.jhydrol.2006.05.020.

    • Search Google Scholar
    • Export Citation
  • Bao, X., and F. Zhang, 2013: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J. Climate, 26, 206214, doi:10.1175/JCLI-D-12-00056.1.

    • Search Google Scholar
    • Export Citation
  • Bendix, J., R. Rollenbeck, and C. Reudenbach, 2006: Diurnal patterns of rainfall in a tropical Andean valley of southern Ecuador as seen by a vertically pointing K-band Doppler radar. Int. J. Climatol., 26, 829846, doi:10.1002/joc.1267.

    • Search Google Scholar
    • Export Citation
  • Bendix, J., K. Trachte, J. Cermak, R. Rollenbeck, and T. Nauß, 2009: Formation of convective clouds at the foothills of the tropical eastern Andes (south Ecuador). J. Appl. Meteor. Climatol., 48, 16821695, doi:10.1175/2009JAMC2078.1.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., S. E. Yuter, C. D. Burleyson, and A. H. Sobel, 2012: Very high resolution rainfall patterns measured by TRMM precipitation radar: Seasonal and diurnal cycles. Climate Dyn., 39, 239258, doi:10.1007/s00382-011-1146-6.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and B. Liebmann, 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17, 88108, doi:10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133, 543566, doi:10.1175/MWR-2876.1.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S.-P. Weng, and S. Schubert, 1999: Maintenance of austral summertime upper-tropospheric circulation over tropical South America: The Bolivian high–Nordeste low system. J. Atmos. Sci., 56, 20812100, doi:10.1175/1520-0469(1999)056<2081:MOASUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 2009: South American climate variability and change: Remote and regional forcing processes. Past Climate Variability in South America and Surrounding Regions: From the Last Glacial Maximum to the Holocene, F. Vimeux, F. Sylvestre, and M. Khodri, Eds., Springer, 193–212.

  • Cosgrove, C. M., and M. Garstang, 1995: Simulation of rain events from rain-gauge measurements. Int. J. Climatol., 15, 10211029, doi:10.1002/joc.3370150908.

    • Search Google Scholar
    • Export Citation
  • Egger, J., and Coauthors, 2005: Diurnal circulation of the Bolivian Altiplano. Part I: Observations. Mon. Wea. Rev., 133, 911924, doi:10.1175/MWR2894.1.

    • Search Google Scholar
    • Export Citation
  • Espinoza, J. C., M. Lengaigne, J. Ronchail, and S. Janicot, 2012: Large-scale circulation patterns and related rainfall in the Amazon Basin: A neuronal networks approach. Climate Dyn., 38, 121140, doi:10.1007/s00382-011-1010-8.

    • Search Google Scholar
    • Export Citation
  • Falvey, M., and R. D. Garreaud, 2005: Moisture variability over the South American Altiplano during the South American Low Level Jet Experiment (SALLJEX) observing season. J. Geophys. Res., 110, D22105, doi:10.1029/2005JD006152.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 1999: Multiscale analysis of the summertime precipitation over the central Andes. Mon. Wea. Rev., 127, 901921, doi:10.1175/1520-0493(1999)127<0901:MAOTSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2000: Intraseasonal variability of moisture and rainfall over the South American Altiplano. Mon. Wea. Rev., 128, 33373346, doi:10.1175/1520-0493(2000)128<3337:IVOMAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2009: The Andes climate and weather. Adv. Geosci., 22, 3–11, doi:10.5194/adgeo-22-3-2009.

  • Garreaud, R. D., and J. M. Wallace, 1998: Summertime incursions of midlatitude air into subtropical and tropical South America. Mon. Wea. Rev., 126, 27132733, doi:10.1175/1520-0493(1998)126<2713:SIOMAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., M. Vuille, and A. C. Clement, 2003: The climate of the Altiplano: Observed current conditions and mechanisms of past changes. Palaeogeogr. Palaeoclimatol. Palaeoecol., 194, 522, doi:10.1016/S0031-0182(03)00269-4.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., M. Vuille, R. Compagnucci, and J. Marengo, 2009: Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 180195, doi:10.1016/j.palaeo.2007.10.032.

    • Search Google Scholar
    • Export Citation
  • Giovannettone, J. P., and A. P. Barros, 2009: Probing regional orographic controls of precipitation and cloudiness in the central Andes using satellite data. J. Hydrometeor., 10, 167182, doi:10.1175/2008JHM973.1.

    • Search Google Scholar
    • Export Citation
  • Haile, A. T., T. H. M. Rientjes, E. Habib, V. Jetten, and M. Gebremichael, 2011: Rain event properties at the source of the Blue Nile River. Hydrol. Earth Syst. Sci., 15, 10231034, doi:10.5194/hess-15-1023-2011.

    • Search Google Scholar
    • Export Citation
  • Hirose, M., and K. Nakamura, 2005: Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM Precipitation Radar. J. Geophys. Res., 110, D05106, doi:10.1029/2004JD004815.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2012: Orographic effects on precipitating clouds. Rev. Geophys.,50, RG1001, doi:10.1029/2011RG000365.

  • Jomelli, V., V. Favier, A. Rabatel, D. Brunstein, G. Hoffmann, and B. Francou, 2009: Fluctuations of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: A review. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 269282, doi:10.1016/j.palaeo.2008.10.033.

    • Search Google Scholar
    • Export Citation
  • Lavado Casimiro, W. S., J. Ronchail, D. Labat, J. C. Espinoza, and J. L. Guyot, 2012: Basin-scale analysis of rainfall and runoff in Peru (1969–2004): Pacific, Titicaca and Amazonas drainages. Hydrol. Sci. J., 57, 625642, doi:10.1080/02626667.2012.672985.

    • Search Google Scholar
    • Export Citation
  • Lenters, J. D., and K. H. Cook, 1997: On the origin of the Bolivian high and related circulation features of the South American climate. J. Atmos. Sci., 54, 656678, doi:10.1175/1520-0469(1997)054<0656:OTOOTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lenters, J. D., and K. H. Cook, 1999: Summertime precipitation variability over South America: Role of the large-scale circulation. Mon. Wea. Rev., 127, 409431, doi:10.1175/1520-0493(1999)127<0409:SPVOSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • L’Hôte, Y., P. Chevallier, A. Coudrain, Y. Lejeune, and P. Etchevers, 2005: Relationship between precipitation phase and air temperature: Comparison between the Bolivian Andes and the Swiss Alps. Hydrol. Sci. J., 50, 989997, doi:10.1623/hysj.2005.50.6.989.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., G. N. Kiladis, J. Marengo, T. Ambrizzi, and J. D. Glick, 1999: Submonthly convective variability over South America and the South Atlantic convergence zone. J. Climate, 12, 18771891, doi:10.1175/1520-0442(1999)012<1877:SCVOSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., G. N. Kiladis, C. S. Vera, A. C. Saulo, and L. M. V. Carvalho, 2004: Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. J. Climate, 17, 38293842, doi:10.1175/1520-0442(2004)017<3829:SVORIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., 2011: Rainfall contributions from precipitation systems with different sizes, convective intensities, and durations over the tropics and subtropics. J. Hydrometeor., 12, 394412, doi:10.1175/2010JHM1320.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2009: “Warm rain” in the tropics: Seasonal and regional distributions based on 9 yr of TRMM data. J. Climate, 22, 767779, doi:10.1175/2008JCLI2641.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, and S. W. Nesbitt, 2007: Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. J. Climate, 20, 489503, doi:10.1175/JCLI4023.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., D. J. Cecil, E. J. Zipser, K. Kronfeld, and R. Robertson, 2012: Relationships between lightning flash rates and radar reflectivity vertical structures in thunderstorms over the tropics and subtropics. J. Geophys. Res. Atmos.,117, D06212, doi:10.1029/2011JD017123.

  • Mark, B. G., 2008: Tracing tropical Andean glaciers over space and time: Some lessons and transdisciplinary implications. Global Planet. Change, 60, 101114, doi:10.1016/j.gloplacha.2006.07.032.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., C. Cohen, and C. Kirkpatrick, 2005: The sensitivity of simulated storm structure, intensity, and precipitation efficiency to environmental temperature. Mon. Wea. Rev., 133, 30153037, doi:10.1175/MWR3015.1.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., 2004: Interannual, monthly, and regional variability in the wet season diurnal cycle of precipitation in sub-Saharan Africa. J. Climate, 17, 24412453, doi:10.1175/1520-0442(2004)017<2441:IMARVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124, 24172437, doi:10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and A. M. Anders, 2009: Very high resolution precipitation climatologies from the Tropical Rainfall Measuring Mission precipitation radar. Geophys. Res. Lett.,36, L15815, doi:10.1029/2009GL038026.

  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106, doi:10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721, doi:10.1175/MWR3200.1.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S. D., and K. I. Mohr, 2010: An analysis of the environments of intense convective systems in West Africa in 2003. Mon. Wea. Rev., 138, 37213739, doi:10.1175/2010MWR3321.1.

    • Search Google Scholar
    • Export Citation
  • Nieto-Ferreira, R., and T. M. Rickenbach, 2011: Regionality of monsoon onset in South America: A three-stage conceptual model. Int. J. Climatol., 31, 13091321, doi:10.1002/joc.2161.

    • Search Google Scholar
    • Export Citation
  • Nogués-Paegle, J., and K. C. Mo, 1997: Alternating wet and dry conditions over South America during summer. Mon. Wea. Rev., 125, 279291, doi:10.1175/1520-0493(1997)125<0279:AWADCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Perry, L. B., A. Seimon, and G. M. Kelly, 2014: Precipitation delivery in the tropical high Andes of southern Peru: New findings and paleoclimatic implications. Int. J. Climatol., 34, 197215, doi:10.1002/joc.3679.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., S. W. Nesbitt, R. J. Blakeslee, R. Cifelli, P. Hein, and S. A. Rutledge, 2002: TRMM observations of intraseasonal variability in convective regimes over the Amazon. J. Climate, 15, 12781294, doi:10.1175/1520-0442(2002)015<1278:TOOIVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rabatel, A., and Coauthors, 2013: Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. Cryosphere, 7, 81102, doi:10.5194/tc-7-81-2013.

    • Search Google Scholar
    • Export Citation
  • Rapp, J. M., and M. R. Silman, 2012: Diurnal, seasonal, and altitudinal trends in microclimate across a tropical montane cloud forest. Climate Res., 55, 1732, doi:10.3354/cr01127.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze, 2011: Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon. Wea. Rev., 139, 23992420, doi:10.1175/MWR-D-10-05006.1.

    • Search Google Scholar
    • Export Citation
  • Rollenbeck, R., and J. Bendix, 2011: Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos. Res., 99, 277289, doi:10.1016/j.atmosres.2010.10.018.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze, 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, doi:10.1175/2010JCLI3465.1.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze, 2011: Characteristics of precipitating convective systems in the South Asian monsoon. J. Hydrometeor., 12, 326, doi:10.1175/2010JHM1289.1.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze, 2013: Characteristics of precipitating convective systems accounting for the summer rainfall of tropical and subtropical South America. J. Hydrometeor., 14, 2546, doi:10.1175/JHM-D-12-060.1.

    • Search Google Scholar
    • Export Citation
  • Ronchail, J., and R. Gallaire, 2006: ENSO and rainfall along the Zongo valley (Bolivia) from the Altiplano to the Amazon basin. Int. J. Climatol., 26, 12231236, doi:10.1002/joc.1296.

    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, doi:10.1175/MWR3305.1.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., and J. A. Marengo, 2000: Tropical–midlatitude exchange of air masses during summer and winter in South America: Climatic aspects and examples of intense events. Int. J. Climatol., 20, 11671190, doi:10.1002/1097-0088(200008)20:10<1167::AID-JOC526>3.0.CO;2-T.

    • Search Google Scholar
    • Export Citation
  • Seluchi, M. E., R. D. Garreaud, F. A. Norte, and A. C. Saulo, 2006: Influence of the subtropical Andes on baroclinic disturbances: A cold front case study. Mon. Wea. Rev., 134, 33173335, doi:10.1175/MWR3247.1.

    • Search Google Scholar
    • Export Citation
  • Siqueira, J. R., and L. A. Toledo Machado, 2004: Influence of the frontal systems on the day-to-day convection variability over South America. J. Climate, 17, 17541766, doi:10.1175/1520-0442(2004)017<1754:IOTFSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takemi, T., 2007: A sensitivity of squall-line intensity to environmental static stability under various shear and moisture conditions. Atmos. Res., 84, 374389, doi:10.1016/j.atmosres.2006.10.001.

    • Search Google Scholar
    • Export Citation
  • Thibeault, J., A. Seth, and G. Wang, 2012: Mechanisms of summertime precipitation variability in the Bolivian Altiplano: Present and future. Int. J. Climatol., 32, 20332041, doi:10.1002/joc.2424.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., D. J. Cecil, E. J. Zipser, and S. W. Nesbitt, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the tropics. Mon. Wea. Rev., 130, 802824, doi:10.1175/1520-0493(2002)130<0802:RPMALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: The South American Low-Level Jet Experiment. Bull. Amer. Meteor. Soc., 87, 6377, doi:10.1175/BAMS-87-1-63.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., 1999: Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation. Int. J. Climatol., 19, 15791600, doi:10.1002/(SICI)1097-0088(19991130)19:14<1579::AID-JOC441>3.0.CO;2-N.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., and F. Keimig, 2004: Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCCP-B3 data. J. Climate, 17, 33343348, doi:10.1175/1520-0442(2004)017<3334:IVOSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., B. L. Fisher, and D. B. Wolff, 2008: Estimating rain rates from tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 25, 4356, doi:10.1175/2007JTECHA895.1.

    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. S. Timlin, 2011: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31, 10741087, doi:10.1002/joc.2336.

    • Search Google Scholar
    • Export Citation
  • Xu, W., 2013: Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Wea. Rev., 141, 15771592, doi:10.1175/MWR-D-12-00177.1.

    • Search Google Scholar
    • Export Citation
  • Yang, S., and E. A. Smith, 2008: Convective–stratiform precipitation variability at seasonal scale from 8 yr of TRMM observations: Implications for multiple modes of diurnal variability. J. Climate, 21, 40874114, doi:10.1175/2008JCLI2096.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1985 762 37
PDF Downloads 619 46 7