Long-Memory Effects in Linear Response Models of Earth’s Temperature and Implications for Future Global Warming

Martin Rypdal Department of Mathematics and Statistics, University of Tromsø, Tromsø, Norway

Search for other papers by Martin Rypdal in
Current site
Google Scholar
PubMed
Close
and
Kristoffer Rypdal Department of Mathematics and Statistics, University of Tromsø, Tromsø, Norway

Search for other papers by Kristoffer Rypdal in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A linearized energy-balance model for global temperature is formulated, featuring a scale-invariant long-range memory (LRM) response and stochastic forcing representing the influence on the ocean heat reservoir from atmospheric weather systems. The model is parameterized by an effective response strength, the stochastic forcing strength, and the memory exponent. The instrumental global surface temperature record and the deterministic component of the forcing are used to estimate these parameters by means of the maximum-likelihood method. The residual obtained by subtracting the deterministic solution from the observed record is analyzed as a noise process and shown to be consistent with a long-memory time series model and inconsistent with a short-memory model. By decomposing the forcing record in contributions from solar, volcanic, and anthropogenic activity one can estimate the contribution of each to twentieth-century global warming. The LRM model is applied with a reconstruction of the forcing for the last millennium to predict the large-scale features of Northern Hemisphere temperature reconstructions, and the analysis of the residual also clearly favors the LRM model on millennium time scale. The decomposition of the forcing shows that volcanic aerosols give a considerably greater contribution to the cooling during the Little Ice Age than the reduction in solar irradiance associated with the Maunder Minimum in solar activity. The LRM model implies a transient climate response in agreement with IPCC projections, but the stronger response on longer time scales suggests replacing the notion of equilibrium climate sensitivity by a time scale–dependent sensitivity.

Denotes Open Access content.

Corresponding author address: Martin Rypdal, University of Tromsø, N-9037 Tromsø, Norway. E-mail: martin.rypdal@uit.no

Abstract

A linearized energy-balance model for global temperature is formulated, featuring a scale-invariant long-range memory (LRM) response and stochastic forcing representing the influence on the ocean heat reservoir from atmospheric weather systems. The model is parameterized by an effective response strength, the stochastic forcing strength, and the memory exponent. The instrumental global surface temperature record and the deterministic component of the forcing are used to estimate these parameters by means of the maximum-likelihood method. The residual obtained by subtracting the deterministic solution from the observed record is analyzed as a noise process and shown to be consistent with a long-memory time series model and inconsistent with a short-memory model. By decomposing the forcing record in contributions from solar, volcanic, and anthropogenic activity one can estimate the contribution of each to twentieth-century global warming. The LRM model is applied with a reconstruction of the forcing for the last millennium to predict the large-scale features of Northern Hemisphere temperature reconstructions, and the analysis of the residual also clearly favors the LRM model on millennium time scale. The decomposition of the forcing shows that volcanic aerosols give a considerably greater contribution to the cooling during the Little Ice Age than the reduction in solar irradiance associated with the Maunder Minimum in solar activity. The LRM model implies a transient climate response in agreement with IPCC projections, but the stronger response on longer time scales suggests replacing the notion of equilibrium climate sensitivity by a time scale–dependent sensitivity.

Denotes Open Access content.

Corresponding author address: Martin Rypdal, University of Tromsø, N-9037 Tromsø, Norway. E-mail: martin.rypdal@uit.no
Save
  • Aldrin, M., M. Holden, P. Guttorp, R. B. Skeie, G. Myhre, and T. K. Berntsen, 2012: Bayesian estimation of climate sensitivity based on a simple climate model fitted to observations of hemispheric temperatures and global ocean heat content. Environmetrics, 23, 253271, doi:10.1002/env.2140.

    • Search Google Scholar
    • Export Citation
  • Beran, J., 1994: Statistics for Long-Memory Processes.Chapman & Hall/CRC, 315 pp.

  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res.,111, D12106, doi:10.1029/2005JD006548.

  • Crowley, T. J., 2000: Causes of climate change over the past 1000 years. Science, 289, 270277, doi:10.1126/science.289.5477.270.

  • Embrechts, P., and M. Maejima, 2002: Selfsimilar Processes.Princeton University Press, 152 pp.

  • Foster, G., and S. Rahmstorf, 2011: Global temperature evolution 1979–2010. Environ. Res. Lett.,6, 044022, doi:10.1088/1748-9326/6/4/044022.

  • Geoffroy, O., D. Saint-Martin, D. J. L. Olivié, A. Voldoire, G. Bellon, and S. Tytéca, 2013: Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments. J. Climate, 26, 18411857, doi:10.1175/JCLI-D-12-00195.1.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Efficacy of climate forcings. J. Geophys. Res.,110, D18104, doi:10.1029/2005JD005776.

  • Hansen, J., M. Sato, P. Kharecha, and K. von Schuckmann, 2011: Earth’s energy imbalance and implications. Atmos. Chem. Phys., 11, 13 42113 449, doi:10.5194/acp-11-13421-2011.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Winton, K. Takahashi, T. Delworth, F. Zeng, and G. K. Vallis, 2010: Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Climate, 23, 24182427, doi:10.1175/2009JCLI3466.1.

    • Search Google Scholar
    • Export Citation
  • Kantelhardt, J. W., E. Koscielny-Bunde, H. H. A. Rego, S. Havlin, and A. Bunde, 2001: Detecting long-range correlations with detrended fluctuation analysis. Physica A, 295, 441454, doi:10.1016/S0378-4371(01)00144-3.

    • Search Google Scholar
    • Export Citation
  • Lean, J. L., and D. H. Rind, 2009: How will Earth’s surface temperature change in future decades? Geophys. Res. Lett.,36, L15708, doi:10.1029/2009GL038932.

  • Lovejoy, S., 2013: What is climate? Eos, Trans. Amer. Geophys. Union, 94 (1), 12, doi:10.1002/2013EO010001.

  • Lovejoy, S., and D. Schertzer, 2013: The Weather and Climate: Emergent Laws and Multifractal Cascades.Cambridge University Press, 489 pp.

  • Mandelbrot, B., and J. W. van Ness, 1968: Fractional Brownian motions, fractional noises and applications. SIAM Rev., 10, 422437, doi:10.1137/1010093.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., 2011: On long-range dependence in global temperature series. Climatic Change, 107, 267276, doi:10.1007/s10584-010-9998-z.

    • Search Google Scholar
    • Export Citation
  • McLeod, I. A., H. Yu, and Z. L. Krougly, 2007: Algorithms for linear time series analysis: With R package. J. Stat. Software, 23 (5), 126.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, C. M. Amman, J. M. Arblaster, T. M. Wigley, and C. Tebaldi, 2004: Combinations of natural and anthropogenic forcings in twentieth-century climate. J. Climate, 17, 37213727, doi:10.1175/1520-0442(2004)017<3721:CONAAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moberg, A., D. M. Sonechkin, K. Holmgren, N. M. Datsenko, and W. Karlén, 2005: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433, 613617, doi:10.1038/nature03265.

    • Search Google Scholar
    • Export Citation
  • Øksendal, B. K., 2003: Stochastic Differential Equations: An Introduction with Applications.Springer, 360 pp.

  • Østvand, L., T. Nilsen, K. Rypdal, D. Divine, and M. Rypdal, 2014: Long-range memory in millennium-long ESM and AOGCM experiments. Earth Syst. Dyn. Discuss., 5, 363401, doi:10.5194/esdd-5-363-2014.

    • Search Google Scholar
    • Export Citation
  • Otto, A., and Coauthors, 2013: Energy budget constraints on climate response. Nature Geosci.,6, 415–416, doi:10.1038/ngeo1836.

  • Rybski, D., A. Bunde, S. Havlin, and H. von Storch, 2006: Long-term persistence in climate and the detection problem. Geophys. Res. Lett.,33, L06718, doi:10.1029/2005GL025591.

  • Rypdal, K., 2012: Global temperature response to radiative forcing: Solar cycle versus volcanic eruptions. J. Geophys. Res.,117, D06115, doi:10.1029/2011JD017283.

  • Rypdal, K., L. Østvand, and M. Rypdal, 2013: Long-range memory in Earth’s surface temperature on time scales from months to centuries. J. Geophys. Res., 118, 70467062, doi:10.1002/jgrd.50399.

    • Search Google Scholar
    • Export Citation
  • Schurer, A. P., S. F. B. Tett, and G. C. Hegerl, 2014: Small influence of solar variability on climate over the past millennium. Nat. Geosci., 7, 104108, doi:10.1038/ngeo2040.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. L. Miller Jr., Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stocker, T. F., and Coauthors, Eds., 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 890 309 11
PDF Downloads 563 165 4