Contrasting Climate Responses to the Scattering and Absorbing Features of Anthropogenic Aerosol Forcings

Ilissa B. Ocko Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Ilissa B. Ocko in
Current site
Google Scholar
PubMed
Close
,
V. Ramaswamy NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by V. Ramaswamy in
Current site
Google Scholar
PubMed
Close
, and
Yi Ming NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Yi Ming in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Anthropogenic aerosols comprise optically scattering and absorbing particles, with the principal concentrations being in the Northern Hemisphere, yielding negative and positive global mean radiative forcings, respectively. Aerosols also influence cloud albedo, yielding additional negative radiative forcings. Climate responses to a comprehensive set of isolated aerosol forcing simulations are investigated in a coupled atmosphere–ocean framework, forced by preindustrial to present-day aerosol-induced radiative perturbations. Atmospheric and oceanic climate responses (including precipitation, atmospheric circulation, atmospheric and oceanic heat transport, sea surface temperature, and salinity) to negative and positive particulate forcings are consistently anticorrelated. The striking effects include distinct patterns of changes north and south of the equator that are governed by the sign of the aerosol forcing and its initiation of an interhemispheric forcing asymmetry. The presence of opposing signs of the forcings between the aerosol scatterers and absorbers, and the resulting contrast in climate responses, thus dilutes the individual effects of aerosol types on influencing global and regional climate conditions. The aerosol-induced changes in the variables also have a distinct fingerprint when compared to the responses of the more globally uniform and interhemispherically symmetric well-mixed greenhouse gas forcing. The significance of employing a full ocean model is demonstrated in this study by the ability to partition how individual aerosols influence atmospheric and oceanic conditions separately.

Current affiliation: Environmental Defense Fund, New York, New York.

Corresponding author address: Ilissa B. Ocko, Environmental Defense Fund, 257 Park Avenue South, New York, NY 10010. E-mail: iocko@edf.org

Abstract

Anthropogenic aerosols comprise optically scattering and absorbing particles, with the principal concentrations being in the Northern Hemisphere, yielding negative and positive global mean radiative forcings, respectively. Aerosols also influence cloud albedo, yielding additional negative radiative forcings. Climate responses to a comprehensive set of isolated aerosol forcing simulations are investigated in a coupled atmosphere–ocean framework, forced by preindustrial to present-day aerosol-induced radiative perturbations. Atmospheric and oceanic climate responses (including precipitation, atmospheric circulation, atmospheric and oceanic heat transport, sea surface temperature, and salinity) to negative and positive particulate forcings are consistently anticorrelated. The striking effects include distinct patterns of changes north and south of the equator that are governed by the sign of the aerosol forcing and its initiation of an interhemispheric forcing asymmetry. The presence of opposing signs of the forcings between the aerosol scatterers and absorbers, and the resulting contrast in climate responses, thus dilutes the individual effects of aerosol types on influencing global and regional climate conditions. The aerosol-induced changes in the variables also have a distinct fingerprint when compared to the responses of the more globally uniform and interhemispherically symmetric well-mixed greenhouse gas forcing. The significance of employing a full ocean model is demonstrated in this study by the ability to partition how individual aerosols influence atmospheric and oceanic conditions separately.

Current affiliation: Environmental Defense Fund, New York, New York.

Corresponding author address: Ilissa B. Ocko, Environmental Defense Fund, 257 Park Avenue South, New York, NY 10010. E-mail: iocko@edf.org
Save
  • Ackerley, D., B. B. Booth, S. H. Knight, E. J. Highwood, D. J. Frame, M. R. Allen, and D. P. Rowell, 2011: Sensitivity of twentieth-century Sahel rainfall to sulfate aerosol and CO2 forcing. J. Climate, 24, 49995014, doi:10.1175/JCLI-D-11-00019.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., P. M. Forster, O. Boucher, N. Bellouin, and A. Jones, 2010: Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett., 37, L14701, doi:10.1029/2010GL043991.

    • Search Google Scholar
    • Export Citation
  • Ban-Weiss, G. A., L. Cao, G. Bala, and K. Caldeira, 2012: Dependence of climate forcing and response on the altitude of black carbon aerosols. Climate Dyn., 38, 897911, doi:10.1007/s00382-011-1052-y.

    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, doi:10.1126/science.1204994.

    • Search Google Scholar
    • Export Citation
  • Cai, W., D. Bi, J. Church, T. Cowan, M. Dix, and L. Rotstayn, 2006: Pan-oceanic response to increasing anthropogenic aerosols: Impacts on the Southern Hemisphere oceanic circulation. Geophys. Res. Lett., 33, L21707, doi:10.1029/2006GL027513.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383412, doi:10.1146/annurev-earth-042711-105545.

    • Search Google Scholar
    • Export Citation
  • Chung, C. E., V. Ramaswamy, and J. T. Kiehl, 2002: Effects of the South Asian absorbing haze on the northeast monsoon and surface–air heat exchange. J. Climate, 15, 24622476, doi:10.1175/1520-0442(2002)015<2462:EOTSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chung, S. H., and J. H. Seinfeld, 2005: Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res., 110, D11102, doi:10.1029/2004JD005441.

    • Search Google Scholar
    • Export Citation
  • Cooke, W. F., C. Liousse, H. Cachier, and J. Feichter, 1999: Construction of a 1° × 1° fossil fuel emission dataset for carbonaceous aerosol and implementation and radiative impact in the ECHAM-4 model. J. Geophys. Res., 104, 22 13722 162, doi:10.1029/1999JD900187.

    • Search Google Scholar
    • Export Citation
  • Cowan, T., and W. Cai, 2013: The response of the large-scale ocean circulation to 20th century Asian and non-Asian aerosols. Geophys. Res. Lett., 40, 27612767, doi:10.1002/grl.50587.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Denman, K. L., and Coauthors, 2007: Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 499–587.

  • Erlick, C., V. Ramaswamy, and L. M. Russell, 2006: Differing regional responses to a perturbation in solar cloud absorption in the SKYHI general circulation model. J. Geophys. Res., 111, D06204, doi:10.1029/2005JD006491.

    • Search Google Scholar
    • Export Citation
  • Feichter, J., E. Roeckner, U. Lohmann, and D. Liepert, 2004: Nonlinear aspects of the climate response to greenhouse gas and aerosol forcing. J. Climate, 17, 23842398, doi:10.1175/1520-0442(2004)017<2384:NAOTCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

  • Freidenreich, S. M., and V. Ramaswamy, 1999: A new multiple-band solar radiative parameterization for general circulation models. J. Geophys. Res., 104, 31 38931 409, doi:10.1029/1999JD900456.

    • Search Google Scholar
    • Export Citation
  • Friedman, A. R., Y.-T. Hwang, J. C. Chiang, and D. M. Frierson, 2013: Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Climate, 26, 54195433, doi:10.1175/JCLI-D-12-00525.1.

    • Search Google Scholar
    • Export Citation
  • Frieler, K., M. Meinshausen, T. Schneider von Deimling, T. Andrews, and P. Forster, 2011: Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon. Geophys. Res. Lett., 38, L04702, doi:10.1029/2010GL045953.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, doi:10.1175/JCLI-D-11-00116.1.

    • Search Google Scholar
    • Export Citation
  • Ginoux, P., L. W. Horowitz, V. Ramaswamy, I. V. Geogdzhayev, B. N. Holben, G. Stenchikov, and X. Tie, 2006: Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate. J. Geophys. Res., 111, D22210, doi:10.1029/2005JD006707.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., M. Salzmann, L. J. Donner, L. W. Horowitz, Y. Ming, and M. Zhao, 2011: Sensitivity of the aerosol indirect effect to subgrid variability in the cloud parameterization of the GFDL atmosphere general circulation model AM3. J. Climate, 24, doi:10.1175/2010JCLI3945.1.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, A. Lacis, R. Ruedy, I. Tegen, and E. Matthews, 1998: Climate forcings in the Industrial era. Proc. Natl. Acad. Sci. USA, 95, 12 75312 758, doi:10.1073/pnas.95.22.12753.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and V. Ramaswamy, 1998: Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. J. Geophys. Res., 103, 60436058, doi:10.1029/97JD03426.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948, doi:10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hill, S., Y. Ming, and I. M. Held, 2014: Mechanisms of forced tropical meridional energy flux change. J. Climate, doi:10.1175/JCLI-D-14-00165.1, in press.

    • Search Google Scholar
    • Export Citation
  • Horowitz, L. W., 2006: Past, present, and future concentrations of tropospheric ozone and aerosols: Methodology, ozone evaluation, and sensitivity to aerosol wet removal. J. Geophys. Res., 111, D22211, doi:10.1029/2005JD006937.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 18491867, doi:10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y. T., D. M. Frierson, and S. M. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 28452850, doi:10.1002/grl.50502.

    • Search Google Scholar
    • Export Citation
  • Jones, A., J. M. Haywood, and O. Boucher, 2007: Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model. J. Geophys. Res., 112, D20211, doi:10.1029/2007JD008688.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, doi:10.1175/2007JCLI2146.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2006: Assessment of twentieth-century regional surface temperature trends using the GFDL CM2 coupled models. J. Climate, 19, 16241651, doi:10.1175/JCLI3709.1.

    • Search Google Scholar
    • Export Citation
  • Koch, D., and Coauthors, 2009: Evaluation of black carbon estimations in global aerosol models. Atmos. Chem. Phys., 9, 90019026, doi:10.5194/acp-9-9001-2009.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., S. Vavrus, F. He, N. Wen, and Y. Zhong, 2005: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18, 46844700, doi:10.1175/JCLI3579.1.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and J. Feichter, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715737, doi:10.5194/acp-5-715-2005.

    • Search Google Scholar
    • Export Citation
  • Lu, J., and B. Zhao, 2012: The role of oceanic feedback in the climate response to doubling CO2. J. Climate, 25, 75447563, doi:10.1175/JCLI-D-11-00712.1.

    • Search Google Scholar
    • Export Citation
  • Mahajan, S., K. J. Evans, J. J. Hack, and J. E. Truesdale, 2013: Linearity of climate response to increases in black carbon aerosols. J. Climate, 26, 82238237, doi:10.1175/JCLI-D-12-00715.1.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and A. J. Broccoli, 1985: The influence of continental ice sheets on the climate of an ice age. J. Geophys. Res., 90, 21672190, doi:10.1029/JD090iD01p02167.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 2007: Role of ocean in global warming. J. Meteor. Soc. Japan, 85B, 385403, doi:10.2151/jmsj.85B.385.

  • Marshall, J., and R. A. Plumb, 2008: Atmosphere, Ocean, and Climate Dynamics: An Introductory Text. Elsevier, 344 pp.

  • Meehl, G. A., J. M. Arblaster, and W. D. Collins, 2008: Effects of black carbon aerosols on the Indian monsoon. J. Climate, 21, 28692882, doi:10.1175/2007JCLI1777.1.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., and V. Ramaswamy, 2009: Nonlinear climate and hydrological responses to aerosol effects. J. Climate, 22, 13291339, doi:10.1175/2008JCLI2362.1.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., and V. Ramaswamy, 2011: A model investigation of aerosol-induced changes in tropical circulation. J. Climate, 24, 51255133, doi:10.1175/2011JCLI4108.1.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., V. Ramaswamy, P. Ginoux, L. W. Horowitz, and L. M. Russell, 2005: Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol. J. Geophys. Res., 110, D22206, doi:10.1029/2005JD006161.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., V. Ramaswamy, and G. Persad, 2010: Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys. Res. Lett., 37, L13701, doi:10.1029/2010GL042895.

    • Search Google Scholar
    • Export Citation
  • Ocko, I. B., V. Ramaswamy, P. Ginoux, Y. Ming, and L. W. Horowitz, 2012: Sensitivity of scattering and absorbing aerosol direct radiative forcing to physical climate factors. J. Geophys. Res., 117, D20203, doi:10.1029/2012JD018019.

    • Search Google Scholar
    • Export Citation
  • Olivier, J. G. J., and Coauthors, 1996: Description of EDGAR version 2.0: A set of global emission inventories of greenhouse gases and ozone depleting substances for all anthropogenic and most natural sources on a per country basis and on a 1 × 1 degree grid. RIVM Rep. 771060 002 TNO-MEP Rep. R96/119, National Institute for Public Health and the Environment, Bilthoven, Netherlands, 171 pp.

  • Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nat. Geosci., 1, 221227, doi:10.1038/ngeo156.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 21192124, doi:10.1126/science.1064034.

    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and C.-T. Chen, 1997: Climate forcing–response relationships for greenhouse and shortwave radiative perturbations. Geophys. Res. Lett., 24, 667670, doi:10.1029/97GL00253.

    • Search Google Scholar
    • Export Citation
  • Randles, C. A., and V. Ramaswamy, 2008: Absorbing aerosols over Asia: A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption. J. Geophys. Res., 113, D21203, doi:10.1029/2008JD010140.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303311, doi:10.1175/BAMS-89-3-303.

    • Search Google Scholar
    • Export Citation
  • Roberts, D. L., and A. Jones, 2004: Climate sensitivity to black carbon aerosol from fossil fuel combustion. J. Geophys. Res., 109, D16202, doi:10.1029/2004JD004676.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., and U. Lohmann, 2002: Tropical rainfall trends and the indirect aerosol effect. J. Climate, 15, 21032116, doi:10.1175/1520-0442(2002)015<2103:TRTATI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., B. F. Ryan, and J. E. Penner, 2000: Precipitation changes in a GCM resulting from the indirect effects of anthropogenic aerosols. Geophys. Res. Lett., 27, 30453048, doi:10.1029/2000GL011737.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., S. J. Jeffrey, M. A. Collier, S. M. Dravitzki, A. C. Hirst, J. I. Syktus, and K. K. Wong, 2012: Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: A study using single-forcing climate simulations. Atmos. Chem. Phys., 12,63776404, doi:10.5194/acp-12-6377-2012.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105, 73377356, doi:10.1029/1999JD901105.

    • Search Google Scholar
    • Export Citation
  • Schwarzkopf, M. D., and V. Ramaswamy, 1999: Radiative edicts of CH2, N2O, halocarbons and the foreign-broadened H2O continuum: A GCM experiment. J. Geophys. Res., 104, 94679488, doi:10.1029/1999JD900003.

    • Search Google Scholar
    • Export Citation
  • Shindell, D., M. Schulz, Y. Ming, T. Takemura, G. Faluvegi, and V. Ramaswamy, 2010: Spatial scales of climate response to inhomogeneous radiative forcing. J. Geophys. Res., 115, D19110, doi:10.1029/2010JD014108.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. M. B. Tignor, and H. L. Miller Jr., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stouffer, R. J., S. Manabe, and K. Bryan, 1989: Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2. Nature, 342, 660662, doi:10.1038/342660a0.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., A. J. Weaver, and M. Eby, 2004: A method for obtaining pre-twentieth century initial conditions for use in climate change studies. Climate Dyn., 23, 327339, doi:10.1007/s00382-004-0446-5.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res., 110, D02202, doi:10.1029/2004JD005029.

    • Search Google Scholar
    • Export Citation
  • Tang, I. N., and H. R. Munkelwitz, 1994: Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance. J. Geophys. Res., 99, 18 80118 808, doi:10.1029/94JD01345.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., and J. E. Penner, 1994: Response of the climate system to atmospheric aerosols and greenhouse gases. Nature, 369, 734737, doi:10.1038/369734a0.

    • Search Google Scholar
    • Export Citation
  • Tie, X., and Coauthors, 2005: Assessment of the global impact of aerosols on tropospheric oxidants. J. Geophys. Res., 110, D03204, doi:10.1029/2004JD005359.

    • Search Google Scholar
    • Export Citation
  • van Aardenne, J. A., F. J. Dentener, G. J. Olivier, C. G. M. Klein Goldewijk, and J. Lelieveld, 2001: A 1° × 1° resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. Global Biogeochem. Cycles, 15, 909928, doi:10.1029/2000GB001265.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2004: A modeling study on the climate impacts of black carbon aerosols. J. Geophys. Res., 109, D03106, doi:10.1029/2003JD004084.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., A. Jones, D. L. Roberts, C. A. Senior, and M. J. Woodage, 2001: The response of the climate system to the indirect effects of anthropogenic sulfate aerosol. Climate Dyn., 17, 845856, doi:10.1007/s003820100150.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525531, doi:10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., B. Lu, and B. Xiang, 2013: Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nat. Geosci., 6, 828832, doi:10.1038/ngeo1931.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., and A. J. Broccoli, 2008: Equilibrium response of an atmosphere–mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21, 43994423, doi:10.1175/2008JCLI2172.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1311 379 11
PDF Downloads 540 148 2