Abstract
The uncertainties related to atmospheric fields in the Arctic Ocean from commonly used and recently available reanalysis products are investigated. Fields from the 1) ECMWF Interim Re-Analysis (ERA-Interim), 2) Common Ocean–Ice Reference Experiment version 2 (CORE2), 3) Japanese 25-yr Reanalysis Project (JRA-25), 4) NCEP–NCAR reanalysis, 5) NCEP Climate Forecast System Reanalysis (CFSR), and 6) Modern-Era Retrospective Analysis for Research and Applications (MERRA) are evaluated against satellite-derived and in situ observations for zonal and meridional winds, precipitation, specific humidity, surface air temperature, and downwelling longwave and shortwave radiation fluxes. Comparison to reference observations shows that for variables such as air temperature and humidity, all reanalysis products have similar solutions. However, other variables such as winds, precipitation, and radiation show large spreads. The magnitude of uncertainties in all fields is large when compared to the signal. Biases in Arctic cloud parameterizations and predicted temperature and humidity profiles in reanalyses as discussed in other studies are likely common sources of error that affect surface downwelling radiation, air temperature, humidity, and precipitation.