Northern Hemisphere Climatology and Trends of Statistical Moments Documented from GHCN-Daily Surface Air Temperature Station Data from 1950 to 2010

Nicholas R. Cavanaugh Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Nicholas R. Cavanaugh in
Current site
Google Scholar
PubMed
Close
and
Samuel S. P. Shen Department of Mathematics and Statistics, San Diego State University, San Diego, California

Search for other papers by Samuel S. P. Shen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The first four statistical moments and their trends are calculated for the average daily surface air temperature (SAT) from 1950 to 2010 using the Global Historical Climatology Network–Daily station data for each season relative to the 1961–90 climatology over the Northern Hemisphere. Temporal variation of daily SAT probability distributions are represented as generalized linear regression coefficients on the mean, standard deviation, skewness, and kurtosis calculated for each 10-yr moving time window from 1950–59 to 2001–10. The climatology and trends of these statistical moments suggest that daily SAT probability distributions are non-Gaussian and are changing in time. The climatology of the first four statistical moments has distinct spatial patterns with large coherent structure for mean and standard deviation and relatively smaller and more regionalized patterns for skewness and kurtosis. The linear temporal trends from 1950 to 2010 of the first four moments also have coherent spatial patterns. The linear temporal trends in the characterizing statistical moments are statistically significant at most locations and have differing spatial patterns for different moments. The regionalized variations specific to higher moments may be related to the climate dynamics that contribute to extremes. The nonzero skewness and kurtosis makes this detailed documentation on the higher statistical moments useful for quantifying climate changes and assessing climate model uncertainties.

Corresponding author address: Nicholas R. Cavanaugh, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0208. E-mail: ncavanaugh@ucsd.edu

Abstract

The first four statistical moments and their trends are calculated for the average daily surface air temperature (SAT) from 1950 to 2010 using the Global Historical Climatology Network–Daily station data for each season relative to the 1961–90 climatology over the Northern Hemisphere. Temporal variation of daily SAT probability distributions are represented as generalized linear regression coefficients on the mean, standard deviation, skewness, and kurtosis calculated for each 10-yr moving time window from 1950–59 to 2001–10. The climatology and trends of these statistical moments suggest that daily SAT probability distributions are non-Gaussian and are changing in time. The climatology of the first four statistical moments has distinct spatial patterns with large coherent structure for mean and standard deviation and relatively smaller and more regionalized patterns for skewness and kurtosis. The linear temporal trends from 1950 to 2010 of the first four moments also have coherent spatial patterns. The linear temporal trends in the characterizing statistical moments are statistically significant at most locations and have differing spatial patterns for different moments. The regionalized variations specific to higher moments may be related to the climate dynamics that contribute to extremes. The nonzero skewness and kurtosis makes this detailed documentation on the higher statistical moments useful for quantifying climate changes and assessing climate model uncertainties.

Corresponding author address: Nicholas R. Cavanaugh, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0208. E-mail: ncavanaugh@ucsd.edu
Save
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi:10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Berner, J., 2005: Linking nonlinearity and non-Gaussianity of planetary wave behavior by the Fokker–Planck equation. J. Atmos. Sci., 62, 20982117, doi:10.1175/JAS3468.1.

    • Search Google Scholar
    • Export Citation
  • Box, G. E. P., G. M. Jenkins, and G. C. Reinsel, 1994: Time Series Analysis: Forecasting and Control. 3rd ed. Prentice Hall, 598 pp.

  • Brooks, C. E. P., and N. Carruthers, 1953: Handbook of Statistical Methods in Meteorology. Her Majesty’s Stationery Office, 412 pp.

  • Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. J. Geophys. Res., 111, D05101, doi:10.1029/2005JD006280.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., M. D. Dettinger, S. A. Kammerdiener,, J. M. Caprio, and D. H. Peterson, 2001: Changes in the onset of spring in the western United States. Bull. Amer. Meteor. Soc., 82, 399415, doi:10.1175/1520-0477(2001)082<0399:CITOOS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Christensen, N. S., A. W. Wood, N. Voisin, D. P. Lettenmaier, and R. N. Palmer, 2004: The effects of climate change on the hydrology and water resources of the Colorado River basin. Climatic Change, 62, 337363, doi:10.1023/B:CLIM.0000013684.13621.1f.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Recent climatology, variability, and trends in global surface humidity. J. Climate, 19, 35893606, doi:10.1175/JCLI3816.1.

    • Search Google Scholar
    • Export Citation
  • Dole, R., and Coauthors, 2011: Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett., 38, L06702, doi:10.1029/2010GL046582.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and L. V. Alexander, 2012: The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett., 39, L14707, doi:10.1029/2012GL052459.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., L. V. Alexander, H. Yang, I. Durre, R. Vose, and J. Caesar, 2013: Global land-based datasets for monitoring climatic extremes. Bull. Amer. Meteor. Soc., 94, 9971006, doi:10.1175/BAMS-D-12-00109.1.

    • Search Google Scholar
    • Export Citation
  • Durre, I., M. J. Menne, B. E. Gleason, T. G. Houston, and R. S. Vose, 2010: Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteor. Climatol., 49, 16151633, doi:10.1175/2010JAMC2375.1.

    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., and C.-H. Ho, 2004: Intra-seasonal variability of wintertime temperature over East Asia. Int. J. Climatol., 24, 131144, doi:10.1002/joc.1006.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 2012: Perception of climate change. Proc. Natl. Acad. Sci. USA, 109, E2415E2423, doi:10.1073/pnas.1205276109.

    • Search Google Scholar
    • Export Citation
  • Hirschi, M., and Coauthors, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci., 4, 1721, doi:10.1038/ngeo1032.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 535 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and R. W. Katz, 2012: A new face for climate dice. Proc. Natl. Acad. Sci. USA, 109, 14 72014 721, doi:10.1073/pnas.1211721109.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., R. W. Knight, and N. Plummer, 1995: Trends in high-frequency climate variability in the twentieth century. Nature, 377, 217220, doi:10.1038/377217a0.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 72667281, doi:10.1175/JCLI-D-11-00709.1.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., B. R. Lintner, J. Kim, H. Lee, J. D. Neelin, and D. E. Waliser, 2013: Classifying reanalysis surface temperature probability density functions (PDFs) over North America with cluster analysis. Geophys. Res. Lett., 40, 37103714, doi:10.1002/grl.50688.

    • Search Google Scholar
    • Export Citation
  • Matsueda, M., 2011: Predictability of Euro-Russian blocking in summer of 2010. Geophys. Res. Lett., 38, L06801, doi:10.1029/2010GL046557.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, doi:10.1126/science.1098704.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Tebaldi, and D. Nychka, 2004: Changes in frost days in simulations of twentyfirst century climate. Climate Dyn., 23, 495511, doi:10.1007/s00382-004-0442-9.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, doi:10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Michaels, P. J., R. C. Balling Jr., R. S. Vose, and P. C. Knappenberger, 1998: Analysis of trends in the variability of daily and monthly historical temperature measurements. Climate Res., 10, 2733, doi:10.3354/cr010027.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., J. C. Fyfe, M. H. P. Ambaum, D. B. Stephenson, and G. R. North, 2009: Empirical orthogonal functions: The medium is the message. J. Climate, 22, 65016514, doi:10.1175/2009JCLI3062.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1993: Extended-range atmospheric prediction and the Lorenz model. Bull. Amer. Meteor. Soc., 74, 4965, doi:10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parker, D. E., P. D. Jones, C. K. Folland, and A. Bevan, 1994: Interdecadal changes of surface temperature since the late nineteenth century. J. Geophys. Res., 99, 14 37314 399, doi:10.1029/94JD00548.

    • Search Google Scholar
    • Export Citation
  • Perron, M., and P. Sura, 2013: Climatology of non-Gaussian atmospheric statistics. J. Climate, 26, 10631083, doi:10.1175/JCLI-D-11-00504.1.

    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., A. V. Eliseev, R. Klein, and H. Oesterle, 2008: On statistics of the free-troposphere synoptic component: An evaluation of skewnesses and mixed third-order moments contribution to the synoptic-scale dynamics and fluxes of heat and humidity. Tellus, 60A, 1131.

    • Search Google Scholar
    • Export Citation
  • Portmann, R. W., S. Solomon, and G. C. Hegerl, 2009: Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc. Natl. Acad. Sci. USA, 106, 73247329, doi:10.1073/pnas.0808533106.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., and D. Coumou, 2011: Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA, 108, 17 90517 909, doi:10.1073/pnas.1101766108.

    • Search Google Scholar
    • Export Citation
  • Robeson, S. M., 2002: Relationships between mean and standard deviation of air temperature: Implications for global warming. Climate Res., 22, 205213, doi:10.3354/cr022205.

    • Search Google Scholar
    • Export Citation
  • Ruff, T. W., and J. D. Neelin, 2012: Long tails in regional surface temperature probability distributions with implications for extremes under global warming. Geophys. Res. Lett., 39, L04704, doi:10.1029/2011GL050610.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and P. Sura, 2009: Reconciling non-Gaussian climate statistics with linear dynamics. J. Climate, 22, 11931207, doi:10.1175/2008JCLI2358.1.

    • Search Google Scholar
    • Export Citation
  • Shen, S. S. P., A. B. Gurung, H.-S. Oh, T. Shu, and D. R. Easterling, 2011: The twentieth century contiguous US temperature changes indicated by daily data and higher statistical moments. Climatic Change, 109, 287317, doi:10.1007/s10584-011-0033-9.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA, 107, 95529555, doi:10.1073/pnas.0913352107.

    • Search Google Scholar
    • Export Citation
  • Solomon, S. D., M. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Stefanova, L., P. Sura, and M. Griffin, 2013: Quantifying the non-Gaussianity of wintertime daily maximum and minimum temperatures in the Southeast. J. Climate, 26, 838850, doi:10.1175/JCLI-D-12-00161.1.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., A. Hannachi, and A. O’Neill, 2004: On the existence of multiple climate regimes. Quart. J. Roy. Meteor. Soc., 130, 583605, doi:10.1256/qj.02.146.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. T., D. R. Cayan, and M. D. Dettinger, 2004: Changes in snowmelt runoff timing in western North America under a ‘business as usual’ climate change scenario. Climatic Change, 62, 217232, doi:10.1023/B:CLIM.0000013702.22656.e8.

    • Search Google Scholar
    • Export Citation
  • Sura, P., 2011: A general perspective of extreme events in weather and climate. Atmos. Res., 101, 121, doi:10.1016/j.atmosres.2011.01.012.

    • Search Google Scholar
    • Export Citation
  • Sura, P., and P. D. Sardeshmukh, 2008: A global view of non-Gaussian SST variability. J. Phys. Oceanogr., 38, 639647, doi:10.1175/2007JPO3761.1.

    • Search Google Scholar
    • Export Citation
  • Sura, P., and M. Perron, 2010: Extreme events and the general circulation: Observations and stochastic model dynamics. J. Atmos. Sci., 67, 27852804, doi:10.1175/2010JAS3369.1.

    • Search Google Scholar
    • Export Citation
  • Sura, P., M. Newman, C. Penland, and P. Sardeshmukh, 2005: Multiplicative noise and non-Gaussianity: A paradigm for atmospheric regimes? J. Atmos. Sci., 62, 13911409, doi:10.1175/JAS3408.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2012: Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res., 117, D17103, doi:10.1029/2012JD018020.

    • Search Google Scholar
    • Export Citation
  • Wackerly, D., W. Mendenhall, and R. L. Scheaffer, 2008: Mathematical Statistics with Applications. 7th ed. Cengage Learning, 914 pp.

  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 649 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 519 139 12
PDF Downloads 339 106 5