Abstract
The authors examine the predictability and prediction skill of the Madden–Julian oscillation (MJO) of two ocean–atmosphere coupled forecast systems of ECMWF [Variable Resolution Ensemble Prediction System (VarEPS)] and NCEP [Climate Forecast System, version 2 (CFSv2)]. The VarEPS hindcasts possess five ensemble members for the period 1993–2009 and the CFSv2 hindcasts possess three ensemble members for the period 2000–09. Predictability and prediction skill are estimated by the bivariate correlation coefficient between the observed and predicted Wheeler–Hendon real-time multivariate MJO index (RMM). MJO predictability is beyond 32 days lead time in both hindcasts, while the prediction skill is about 27 days in VarEPS and 21 days in CFSv2 as measured by the bivariate correlation exceeding 0.5. Both predictability and prediction skill of MJO are enhanced by averaging ensembles. Results show clearly that forecasts initialized with (or targeting) strong MJOs possess greater prediction skill compared to those initialized with (or targeting) weak or nonexistent MJOs. The predictability is insensitive to the initial MJO phase (or forecast target phase), although the prediction skill varies with MJO phases.
A few common model issues are identified. In both hindcasts, the MJO propagation speed is slower and the MJO amplitude is weaker than observed. Also, both ensemble forecast systems are underdispersive, meaning that the growth rate of ensemble error is greater than the growth rate of the ensemble spread by lead time.