Predictability and Prediction Skill of the MJO in Two Operational Forecasting Systems

Hye-Mi Kim School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Search for other papers by Hye-Mi Kim in
Current site
Google Scholar
PubMed
Close
,
Peter J. Webster School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Peter J. Webster in
Current site
Google Scholar
PubMed
Close
,
Violeta E. Toma School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Violeta E. Toma in
Current site
Google Scholar
PubMed
Close
, and
Daehyun Kim Department of Atmospheric Science, University of Washington, Seattle, Washington

Search for other papers by Daehyun Kim in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors examine the predictability and prediction skill of the Madden–Julian oscillation (MJO) of two ocean–atmosphere coupled forecast systems of ECMWF [Variable Resolution Ensemble Prediction System (VarEPS)] and NCEP [Climate Forecast System, version 2 (CFSv2)]. The VarEPS hindcasts possess five ensemble members for the period 1993–2009 and the CFSv2 hindcasts possess three ensemble members for the period 2000–09. Predictability and prediction skill are estimated by the bivariate correlation coefficient between the observed and predicted Wheeler–Hendon real-time multivariate MJO index (RMM). MJO predictability is beyond 32 days lead time in both hindcasts, while the prediction skill is about 27 days in VarEPS and 21 days in CFSv2 as measured by the bivariate correlation exceeding 0.5. Both predictability and prediction skill of MJO are enhanced by averaging ensembles. Results show clearly that forecasts initialized with (or targeting) strong MJOs possess greater prediction skill compared to those initialized with (or targeting) weak or nonexistent MJOs. The predictability is insensitive to the initial MJO phase (or forecast target phase), although the prediction skill varies with MJO phases.

A few common model issues are identified. In both hindcasts, the MJO propagation speed is slower and the MJO amplitude is weaker than observed. Also, both ensemble forecast systems are underdispersive, meaning that the growth rate of ensemble error is greater than the growth rate of the ensemble spread by lead time.

Corresponding author address: Hye-Mi Kim, School of Marine and Atmospheric Sciences, 119 Endeavour Hall, Stony Brook University, Stony Brook, NY 11794. E-mail: hyemi.kim@stonybrook.edu

Abstract

The authors examine the predictability and prediction skill of the Madden–Julian oscillation (MJO) of two ocean–atmosphere coupled forecast systems of ECMWF [Variable Resolution Ensemble Prediction System (VarEPS)] and NCEP [Climate Forecast System, version 2 (CFSv2)]. The VarEPS hindcasts possess five ensemble members for the period 1993–2009 and the CFSv2 hindcasts possess three ensemble members for the period 2000–09. Predictability and prediction skill are estimated by the bivariate correlation coefficient between the observed and predicted Wheeler–Hendon real-time multivariate MJO index (RMM). MJO predictability is beyond 32 days lead time in both hindcasts, while the prediction skill is about 27 days in VarEPS and 21 days in CFSv2 as measured by the bivariate correlation exceeding 0.5. Both predictability and prediction skill of MJO are enhanced by averaging ensembles. Results show clearly that forecasts initialized with (or targeting) strong MJOs possess greater prediction skill compared to those initialized with (or targeting) weak or nonexistent MJOs. The predictability is insensitive to the initial MJO phase (or forecast target phase), although the prediction skill varies with MJO phases.

A few common model issues are identified. In both hindcasts, the MJO propagation speed is slower and the MJO amplitude is weaker than observed. Also, both ensemble forecast systems are underdispersive, meaning that the growth rate of ensemble error is greater than the growth rate of the ensemble spread by lead time.

Corresponding author address: Hye-Mi Kim, School of Marine and Atmospheric Sciences, 119 Endeavour Hall, Stony Brook University, Stony Brook, NY 11794. E-mail: hyemi.kim@stonybrook.edu
Save
  • Agudelo, P. A., C. D. Hoyos, P. J. Webster, and J. A. Curry, 2009: Application of a serial extended forecast experiment using the ECMWF model to interpret the predictive skill of tropical intraseasonal variability. Climate Dyn., 32, 855872, doi:10.1007/s00382-008-0447-x.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, J.-Y. Lee, W. Wang, and L. Gao, 2011: Sensitivity of dynamical intraseasonal prediction skills to different initial conditions. Mon. Wea. Rev., 139, 25722592, doi:10.1175/2011MWR3584.1.

    • Search Google Scholar
    • Export Citation
  • Fu, X., J.-Y. Lee, P.-C. Hsu, H. Taniguchi, B. Wang, W. Wang, and S. Weaver, 2013: Multi-model MJO forecasting during DYNAMO/CINDY period. Climate Dyn., 41, 10671081, doi:10.1007/s00382-013-1859-9.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., and Coauthors, 2010: A framework for assessing operational Madden–Julian oscillation forecasts: A CLIVAR MJO Working Group project. Bull. Amer. Meteor. Soc., 91, 12471258, doi:10.1175/2010BAMS2816.1.

    • Search Google Scholar
    • Export Citation
  • Han, W., D. Lawrence, and P. J. Webster, 2001: Dynamical response of equatorial Indian Ocean to intraseasonal winds: Zonal flow. Geophys. Res. Lett., 28, 42154218, doi:10.1029/2001GL013701.

    • Search Google Scholar
    • Export Citation
  • Hirata, F. E., P. J. Webster, and V. E. Toma, 2013: Distinct manifestations of austral summer tropical intraseasonal oscillations. Geophys. Res. Lett., 40, 33373341, doi:10.1002/grl.50632.

    • Search Google Scholar
    • Export Citation
  • Hudson, D., A. G. Marshall, Y. Yin, O. Alves, and H. Hendon, 2013: Improving intraseasonal prediction with a new ensemble generation strategy. Mon. Wea. Rev., 141, 44294449, doi:10.1175/MWR-D-13-00059.1.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and H.-M. Kim, 2010: Assessment of MJO predictability for boreal winter with various statistical and dynamical models. J. Climate, 23, 23682378, doi:10.1175/2010JCLI3288.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., J. S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, doi:10.1175/JCLI-D-13-00084.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., and I.-S. Kang, 2008: The impact of ocean–atmosphere coupling on the predictability of boreal summer intraseasonal oscillation. Climate Dyn., 31, 859870, doi:10.1007/s00382-008-0409-3.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2012a: Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere winter. Climate Dyn., 39, 29572973, doi:10.1007/s00382-012-1364-6.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, J. A. Curry, and V. Toma, 2012b: Asian summer monsoon prediction in ECMWF system 4 and NCEP CFSv2 retrospective seasonal forecasts. Climate Dyn., 39, 29752991, doi:10.1007/s00382-012-1470-5.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and D. E. Waliser, Eds., 2011: Intraseasonal Variability of the Atmosphere–Ocean Climate System. 2nd ed. Springer, 613 pp.

  • Lawrence, D., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation and the South Asian monsoon. J. Atmos. Sci., 59, 15931606, doi:10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2008: Forecast skill of the Madden–Julian oscillation in two Canadian atmospheric models. Mon. Wea. Rev., 136, 41304149, doi:10.1175/2008MWR2459.1.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maharaj, E. A., and M. C. Wheeler, 2005: Forecasting an index of the Madden–Julian oscillation. Int. J. Climatol., 25, 16111618, doi:10.1002/joc.1206.

    • Search Google Scholar
    • Export Citation
  • Matsueda, M., and H. Endo, 2011: Verification of medium-range MJO forecasts with TIGGE. Geophys. Res. Lett., 38, L11801, doi:10.1029/2011GL047480.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453, doi:10.1002/qj.224.

    • Search Google Scholar
    • Export Citation
  • Rashid, H. A., H. H. Hendon, M. C. Wheeler, and O. Alves, 2011: Prediction of the Madden–Julian oscillation with the POAMA dynamical prediction system. Climate Dyn., 36, 649661, doi:10.1007/s00382-010-0754-x.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. O. Roads, 2005: Long-range predictability in the tropics. Part II: 30–60-day variability. J. Climate, 18, 634650, doi:10.1175/JCLI-3295.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Seo, K.-H., and W. Wang, 2010: The Madden–Julian oscillation simulated in the NCEP Climate Forecast System model: The importance of stratiform heating. J. Climate, 23, 47704793, doi:10.1175/2010JCLI2983.1.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., W. Wang, J. Gottschalck, Q. Zhang, J.-K. Schemm, W. Higgins, and A. Kumar, 2009: Evaluation of MJO forecast skill from several statistical and dynamical forecast models. J. Climate, 22, 23722388, doi:10.1175/2008JCLI2421.1.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., M. C. Wheeler, H. H. Hendon, C. J. Schreck III, C. D. Thorncroft, and G. N. Kiladis, 2013: A modified multivariate Madden–Julian oscillation index using velocity potential. Mon. Wea. Rev., 141, 41974120, doi:10.1175/MWR-D-12-00327.1.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2256, in press.

  • Vitart, F., and F. Molteni, 2010: Simulation of the Madden–Julian oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855, doi:10.1002/qj.623.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., S. Woolnough, M. A. Balmaseda, and A. Tompkins, 2007: Monthly forecast of the Madden–Julian oscillation using a coupled GCM. Mon. Wea. Rev., 135, 27002715, doi:10.1175/MWR3415.1.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., A. Leroy, and M. C. Wheeler, 2010: A comparison of dynamical and statistical predictions of weekly tropical cyclone activity in the Southern Hemisphere. Mon. Wea. Rev., 138, 36713682, doi:10.1175/2010MWR3343.1.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, 2003: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84, 3350, doi:10.1175/BAMS-84-1-33.

    • Search Google Scholar
    • Export Citation
  • Wang, W., M.-P. Hung, S. J. Weaver, A. Kumar, and X. Fu, 2014: MJO prediction in the NCEP Climate Forecast System version 2. Climate Dyn., 42, 2509–2520, doi:10.1007/s00382-013-1806-9.

    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., W. Wang, M. Chen, and A. Kumar, 2011: Representation of the MJO variability in the NCEP Climate Forecast System. J. Climate, 24, 46764694, doi:10.1175/2011JCLI4188.1.

    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., T. N. Palmer, and F. J. Doblas-Reyes, 2011: Assessment of representations of model uncertainty in monthly and seasonal forecast ensembles. Geophys. Res. Lett., 38, L16703, doi:10.1029/2011GL048123.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., J. Gottschalck, E. D. Maloney, M. Moncrieff, F. Vitart, D. E. Waliser, B. Wang, and M. C. Wheeler, 2013: Cracking the MJO nut. Geophys. Res. Lett., 40, 12231230, doi:10.1002/grl.50244.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., and H. van den Dool, 2012: Relative merit of model improvement versus availability of retrospective forecasts: The case of Climate Forecast System MJO prediction. Wea. Forecasting, 27, 10451051, doi:10.1175/WAF-D-11-00133.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1649 448 28
PDF Downloads 1298 253 25