Process-Oriented MJO Simulation Diagnostic: Moisture Sensitivity of Simulated Convection

Daehyun Kim Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Daehyun Kim in
Current site
Google Scholar
PubMed
Close
,
Prince Xavier Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Prince Xavier in
Current site
Google Scholar
PubMed
Close
,
Eric Maloney Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Eric Maloney in
Current site
Google Scholar
PubMed
Close
,
Matthew Wheeler Centre for Australian Weather and Climate Research, Melbourne, Australia

Search for other papers by Matthew Wheeler in
Current site
Google Scholar
PubMed
Close
,
Duane Waliser Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Duane Waliser in
Current site
Google Scholar
PubMed
Close
,
Kenneth Sperber Lawrence Livermore National Laboratory, PCMDI, Livermore, California

Search for other papers by Kenneth Sperber in
Current site
Google Scholar
PubMed
Close
,
Harry Hendon Centre for Australian Weather and Climate Research, Melbourne, Australia

Search for other papers by Harry Hendon in
Current site
Google Scholar
PubMed
Close
,
Chidong Zhang Rosenstiel School of Marine and Atmospheric Science, Miami, Florida

Search for other papers by Chidong Zhang in
Current site
Google Scholar
PubMed
Close
,
Richard Neale National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Richard Neale in
Current site
Google Scholar
PubMed
Close
,
Yen-Ting Hwang Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Yen-Ting Hwang in
Current site
Google Scholar
PubMed
Close
, and
Haibo Liu Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Haibo Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Process-oriented diagnostics for Madden–Julian oscillation (MJO) simulations are being developed to facilitate improvements in the representation of the MJO in weather and climate models. These process-oriented diagnostics are intended to provide insights into how parameterizations of physical processes in climate models should be improved for a better MJO simulation. This paper proposes one such process-oriented diagnostic, which is designed to represent sensitivity of simulated convection to environmental moisture: composites of a relative humidity (RH) profile based on precipitation percentiles. The ability of the RH composite diagnostic to represent the diversity of MJO simulation skill is demonstrated using a group of climate model simulations participating in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). A set of scalar process metrics that captures the key physical attributes of the RH diagnostic is derived and their statistical relationship with indices that quantify the fidelity of the MJO simulation is tested. It is found that a process metric that represents the amount of lower-tropospheric humidity increase required for a transition from weak to strong rain regimes has a robust statistical relationship with MJO simulation skill. The results herein suggest that moisture sensitivity of convection is closely related to a GCM’s ability to simulate the MJO.

Current affiliation: Department of Atmospheric Sciences, University of Washington, Seattle, Washington.

Current affiliation: Climate, Atmospheric Science, and Physical Oceanography, Scripps Institute of Oceanography, University of California San Diego, La Jolla, California.

Corresponding author address: Daehyun Kim, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964-8000. E-mail: dkim@ldeo.columbia.edu

Abstract

Process-oriented diagnostics for Madden–Julian oscillation (MJO) simulations are being developed to facilitate improvements in the representation of the MJO in weather and climate models. These process-oriented diagnostics are intended to provide insights into how parameterizations of physical processes in climate models should be improved for a better MJO simulation. This paper proposes one such process-oriented diagnostic, which is designed to represent sensitivity of simulated convection to environmental moisture: composites of a relative humidity (RH) profile based on precipitation percentiles. The ability of the RH composite diagnostic to represent the diversity of MJO simulation skill is demonstrated using a group of climate model simulations participating in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). A set of scalar process metrics that captures the key physical attributes of the RH diagnostic is derived and their statistical relationship with indices that quantify the fidelity of the MJO simulation is tested. It is found that a process metric that represents the amount of lower-tropospheric humidity increase required for a transition from weak to strong rain regimes has a robust statistical relationship with MJO simulation skill. The results herein suggest that moisture sensitivity of convection is closely related to a GCM’s ability to simulate the MJO.

Current affiliation: Department of Atmospheric Sciences, University of Washington, Seattle, Washington.

Current affiliation: Climate, Atmospheric Science, and Physical Oceanography, Scripps Institute of Oceanography, University of California San Diego, La Jolla, California.

Corresponding author address: Daehyun Kim, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964-8000. E-mail: dkim@ldeo.columbia.edu
Save
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, doi:10.1175/JCLI-D-11-00168.1.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., M. Lebsock, S. Wong, and B. Lambrigtsen, 2012: On the quantification of oceanic rainfall using spaceborne sensors. J. Geophys. Res., 117, D20105, doi:10.1029/2012JD017979.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691, doi:10.1002/qj.49711247307.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50, 29222939, doi:10.1175/1520-0469(1993)050<2922:TIOIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and K. A. Emanuel, 2005: On the role of moist processes in tropical intraseasonal variability: Cloud–radiation and moisture–convection feedbacks. J. Atmos. Sci., 62, 27702789, doi:10.1175/JAS3506.1.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., 1985: A simple parameterization of the large-scale effects of cumulus convection. Mon. Wea. Rev., 113, 21082121, doi:10.1175/1520-0493(1985)113<2108:ASPOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationship between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crueger, T., B. Stevens, and R. Brokopf, 2013: The Madden–Julian oscillation in ECHAM6 and the introduction of an objective MJO metric. J. Climate, 26, 32413257, doi:10.1175/JCLI-D-12-00413.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and M.-S. Yao, 1993: Efficient cumulus parameterization for long-term climate studies: The GISS scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 181–184.

  • Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, doi:10.1175/JCLI-D-11-00384.1.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quart. J. Roy. Meteor. Soc., 130, 30553079, doi:10.1256/qj.03.130.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 23132335, doi:10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emori, S., T. Nozawa, A. Numaguti, and I. Uno, 2001: Importance of cumulus parameterization for precipitation simulation over East Asia in June. J. Meteor. Soc. Japan, 79, 939947, doi:10.2151/jmsj.79.939.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506, doi:10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., and E. D. Maloney, 2011: The role of moisture–convection feedbacks in simulating the Madden–Julian oscillation. J. Climate, 24, 27542770, doi:10.1175/2011JCLI3803.1.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, doi:10.1175/2008JAS2806.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and D. A. Randall, 1994: Low-frequency oscillations in radiative–convective systems. J. Atmos. Sci., 51, 10891099, doi:10.1175/1520-0469(1994)051<1089:LFOIRC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and D. A. Randall, 1995: Low-frequency oscillations in radiative–convective systems. Part II: An idealized model. J. Atmos. Sci., 52, 478490, doi:10.1175/1520-0469(1995)052<0478:LFOIRC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Hung, M.-P., J.-L. Lin, W. Wang, D. Kim, T. Shinoda, and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26,61856214, doi:10.1175/JCLI-D-12-00541.1.

    • Search Google Scholar
    • Export Citation
  • Jones, C., 2000: Occurrence of extreme precipitation events in California and relationships with the Madden–Julian oscillation. J. Climate, 13, 35763587, doi:10.1175/1520-0442(2000)013<3576:OOEPEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793, doi:10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and I.-S. Kang, 2012: A bulk mass flux convection scheme for climate model: Description and moisture sensitivity. Climate Dyn., 38, 411429, doi:10.1007/s00382-010-0972-2.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436, doi:10.1175/2009JCLI3063.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, and I.-S. Kang, 2011a: A mechanism denial study on the Madden–Julian oscillation. J. Adv. Model. Earth Syst.,3, M12007, doi:10.1029/2011MS000081.

  • Kim, D., A. H. Sobel, E. D. Maloney, D. M. W. Frierson, and I.-S. Kang, 2011b: A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Climate, 24, 55065520, doi:10.1175/2011JCLI4177.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, A. D. Del Genio, Y. Chen, S. J. Camargo, M.-S. Yao, M. Kelley, and L. Nazarenko, 2012: The tropical subseasonal variability simulated in the NASA GISS general circulation model. J. Climate, 25, 46414659, doi:10.1175/JCLI-D-11-00447.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, doi:10.1175/JCLI-D-13-00084.1.

    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. D. Maloney, 2011a: Effect of SST distribution and radiative feedbacks on the simulation of intraseasonal variability in an aquaplanet GCM. J. Meteor. Soc. Japan, 89, 195210, doi:10.2151/jmsj.2011-302.

    • Search Google Scholar
    • Export Citation
  • Kiranmayi, L., and E. D. Maloney, 2011b: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res., 116, D21117, doi:10.1029/2011JD016031.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., and D. E. Waliser, 2011: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, 648 pp.

  • Lee, M.-I., I.-S. Kang, and B. E. Mapes, 2003: Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteor. Soc. Japan, 81, 963992, doi:10.2151/jmsj.81.963.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and B. E. Mapes, 2004: Radiation budget of the tropical intraseasonal oscillation. J. Atmos. Sci., 61, 20502062, doi:10.1175/1520-0469(2004)061<2050:RBOTTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690, doi:10.1175/JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., M.-I. Lee, D. Kim, I.-S. Kang, and D. M. W. Frierson, 2008: The impacts of convective parameterization and moisture triggering on AGCM-simulated convectively coupled equatorial waves. J. Climate, 21, 883909, doi:10.1175/2007JCLI1790.1.

    • Search Google Scholar
    • Export Citation
  • Ma, D., and Z. Kuang, 2011: Modulation of radiative heating by the Madden–Julian oscillation and convectively coupled Kelvin waves as observed by CloudSat. Geophys. Res. Lett., 38, L21813, doi:10.1029/2011GL049734.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian oscillation. Science, 287, 20022004, doi:10.1126/science.287.5460.2002.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001: The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14, 20152034, doi:10.1175/1520-0442(2001)014<2015:TSOIVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., A. H. Sobel, and W. M. Hannah, 2010: Intraseasonal variability in an aquaplanet general circulation model. J. Adv. Model. Earth. Syst.,2, 5, doi:10.3894/JAMES.2010.2.5.

  • Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer, M. Latif, B. McAvaney, and J. F. B. Mitchell, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert. A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, doi:10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, doi:10.1175/2008JCLI2244.1.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech. Memo. 206, 41 pp.

  • Pan, D.-M., and D. D. A. Randall, 1998: A cumulus parameterization with a prognostic closure. Quart. J. Roy. Meteor. Soc., 124, 949981.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 28072819, doi:10.1175/1520-0469(2001)058<2807:ANMOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 14871499, doi:10.1175/2007JCLI1789.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Sahany, S., J. D. Neelin, K. Hales, and R. B. Neale, 2012: Temperature–moisture dependence of the deep convective transition as a constraint on entrainment in climate models. J. Atmos. Sci., 69, 13401358, doi:10.1175/JAS-D-11-0164.1.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12, 325357, doi:10.1007/BF00231106.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and H. Gildor, 2003: A simple time-dependent model of SST hot spots. J. Climate, 16, 39783992, doi:10.1175/1520-0442(2003)016<3978:ASTMOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. D. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian oscillation. J. Atmos. Sci., 69, 16911705, doi:10.1175/JAS-D-11-0118.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and E. D. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, doi:10.1175/JAS-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., 2003: Propagation and the vertical structure of the Madden–Julian oscillation. Mon. Wea. Rev., 131, 30183037, doi:10.1175/1520-0493(2003)131<3018:PATVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., and D. Kim, 2012: Simplified metrics for the identification of the Madden–Julian oscillation in models. Atmos. Sci. Lett., 13, 187193, doi:10.1002/asl.378.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., S. Gualdi, S. Legutke, and V. Gayler, 2005: The Madden–Julian oscillation in ECHAM4 coupled and uncoupled general circulation models. Climate Dyn., 25, 117140, doi:10.1007/s00382-005-0026-3.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., T. Iguchi, M. Kachi, A. Shibata, and H. Kanzawa, 1999: Abrupt termination of the 1997–98 El Niño in response to a Madden–Julian oscillation. Nature, 402, 279282, doi:10.1038/46254.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thayer-Calder, K., and D. A. Randall, 2009: The role of convective moistening in the Madden–Julian oscillation. J. Atmos. Sci., 66, 32973312, doi:10.1175/2009JAS3081.1.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30–60 day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883901.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2003: AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dyn., 21, 423446, doi:10.1007/s00382-003-0337-1.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12, 14231457, doi:10.1175/1520-0442(1999)012<1423:TDOCPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and J. L. McBride, 2005: Australian–Indonesian monsoon. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K.-M. Lau and D. E. Waliser, Eds., Springer, 125–173.

  • Wheeler, M. C., E. D. Maloney, and the MJO Task Force, 2013: Madden–Julian oscillation (MJO) Task Force: A joint effort of the climate and weather communities. CLIVAR Exchanges, No. 61, International CLIVAR Project Office, Southampton, United Kingdom, 9–12.

  • Xavier, P. K., 2012: Intraseasonal convective moistening in CMIP3 models. J. Climate, 25, 25692577, doi:10.1175/JCLI-D-11-00427.1.

  • Yasunaga, K., and B. E. Mapes, 2012: Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part I: Space–time spectral analyses. J. Atmos. Sci., 69, 316, doi:10.1175/JAS-D-11-033.1.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2011: Meteorological Research Institute-Earth System Model version 1 (MRI-ESM1)—Model description. Meteorological Research Institute Tech. Rep. 64, 83 pp. [Available online at http://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_64/index_en.html.]

  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., and H. H. Hendon, 1997: Propagating and standing components of the intraseasonal oscillation in tropical convection. J. Atmos. Sci., 54, 741752, doi:10.1175/1520-0469(1997)054<0741:PASCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and M. Mu, 2005: Simulation of the Madden–Julian oscillation in the NCAR CCM3 using a revised Zhang–McFarlane convection parameterization scheme. J. Climate, 18, 40464064, doi:10.1175/JCLI3508.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, H., H. H. Hendon, and C. Jakob, 2009: Convection in a parameterized and superparameterized model and its role in the representation of the MJO. J. Atmos. Sci., 66, 27962811, doi:10.1175/2009JAS3097.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1100 323 28
PDF Downloads 565 150 28