ENSO Seasonal Synchronization Theory

Karl Stein Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Hawaii

Search for other papers by Karl Stein in
Current site
Google Scholar
PubMed
Close
,
Axel Timmermann International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Hawaii

Search for other papers by Axel Timmermann in
Current site
Google Scholar
PubMed
Close
,
Niklas Schneider International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Hawaii

Search for other papers by Niklas Schneider in
Current site
Google Scholar
PubMed
Close
,
Fei-Fei Jin Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Hawaii

Search for other papers by Fei-Fei Jin in
Current site
Google Scholar
PubMed
Close
, and
Malte F. Stuecker Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Hawaii

Search for other papers by Malte F. Stuecker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

One of the key characteristics of El Niño–Southern Oscillation (ENSO) is its synchronization to the annual cycle, which manifests in the tendency of ENSO events to peak during boreal winter. Current theory offers two possible mechanisms to account the for ENSO synchronization: frequency locking of ENSO to periodic forcing by the annual cycle, or the effect of the seasonally varying background state of the equatorial Pacific on ENSO’s coupled stability. Using a parametric recharge oscillator (PRO) model of ENSO, the authors test which of these scenarios provides a better explanation of the observed ENSO synchronization.

Analytical solutions of the PRO model show that the annual modulation of the growth rate parameter results directly in ENSO’s seasonal variance, amplitude modulation, and 2:1 phase synchronization to the annual cycle. The solutions are shown to be applicable to the long-term behavior of the damped model excited by stochastic noise, which produces synchronization characteristics that agree with the observations and can account for the variety of ENSO synchronization behavior in state-of-the-art coupled general circulation models. The model also predicts spectral peaks at “combination tones” between ENSO and the annual cycle that exist in the observations and many coupled models. In contrast, the nonlinear frequency entrainment scenario predicts the existence of a spectral peak at the biennial frequency corresponding to the observed 2:1 phase synchronization. Such a peak does not exist in the observed ENSO spectrum. Hence, it can be concluded that the seasonal modulation of the coupled stability is responsible for the synchronization of ENSO events to the annual cycle.

Corresponding author address: Karl Stein, Department of Oceanography, University of Hawai‘i at Mānoa, 1000 Pope Road, Honolulu, HI 96822. E-mail: kstein@hawaii.edu

Abstract

One of the key characteristics of El Niño–Southern Oscillation (ENSO) is its synchronization to the annual cycle, which manifests in the tendency of ENSO events to peak during boreal winter. Current theory offers two possible mechanisms to account the for ENSO synchronization: frequency locking of ENSO to periodic forcing by the annual cycle, or the effect of the seasonally varying background state of the equatorial Pacific on ENSO’s coupled stability. Using a parametric recharge oscillator (PRO) model of ENSO, the authors test which of these scenarios provides a better explanation of the observed ENSO synchronization.

Analytical solutions of the PRO model show that the annual modulation of the growth rate parameter results directly in ENSO’s seasonal variance, amplitude modulation, and 2:1 phase synchronization to the annual cycle. The solutions are shown to be applicable to the long-term behavior of the damped model excited by stochastic noise, which produces synchronization characteristics that agree with the observations and can account for the variety of ENSO synchronization behavior in state-of-the-art coupled general circulation models. The model also predicts spectral peaks at “combination tones” between ENSO and the annual cycle that exist in the observations and many coupled models. In contrast, the nonlinear frequency entrainment scenario predicts the existence of a spectral peak at the biennial frequency corresponding to the observed 2:1 phase synchronization. Such a peak does not exist in the observed ENSO spectrum. Hence, it can be concluded that the seasonal modulation of the coupled stability is responsible for the synchronization of ENSO events to the annual cycle.

Corresponding author address: Karl Stein, Department of Oceanography, University of Hawai‘i at Mānoa, 1000 Pope Road, Honolulu, HI 96822. E-mail: kstein@hawaii.edu
Save
  • An, S., and F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, doi:10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • An, S., and F. Jin, 2011: Linear solutions for the frequency and amplitude modulation of ENSO by the annual cycle. Tellus, 63A, 238243, doi:10.1111/j.1600-0870.2010.00482.x.

    • Search Google Scholar
    • Export Citation
  • Arnol’d, V. I., M. Levi, and J. Szucs, 1983: Geometrical Methods in the Theory of Ordinary Differential Equations. 2nd ed. Springer-Verlag, 351 pp.

  • Balmaseda, M. A., M. K. Davey, and D. L. Anderson, 1995: Decadal and seasonal dependence of ENSO prediction skill. J. Climate, 8, 27052715, doi:10.1175/1520-0442(1995)008<2705:DASDOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., and D. Stephenson, 1999: The normality of El Niño. Geophys. Res. Lett., 26, 10271030, doi:10.1029/1999GL900161.

  • Chang, P., B. Wang, T. Li, and L. Ji, 1994: Interactions between the seasonal cycle and the southern oscillation—Frequency entrainment and chaos in a coupled ocean–atmosphere model. Geophys. Res. Lett., 21, 28172820, doi:10.1029/94GL02759.

    • Search Google Scholar
    • Export Citation
  • Gabor, D., 1946: Theory of communication. J. IEEE, 93, 429457.

  • Galanti, E., E. Tziperman, M. Harrison, A. Rosati, R. Giering, and Z. Sirkes, 2002: The equatorial thermocline outcropping—A seasonal control on the tropical Pacific Ocean–atmosphere instability strength. J. Climate, 15, 27212739, doi:10.1175/1520-0442(2002)015<2721:TETOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrison, D., and G. Vecchi, 1999: On the termination of El Niño. Geophys. Res. Lett., 26, 15931596, doi:10.1029/1999GL900316.

  • Hendon, H. H., M. C. Wheeler, and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531543, doi:10.1175/JCLI4003.1.

    • Search Google Scholar
    • Export Citation
  • Hirst, A., 1986: Unstable and damped equatorial modes in simple coupled ocean–atmosphere models. J. Atmos. Sci., 43, 606632, doi:10.1175/1520-0469(1986)043<0606:UADEMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, doi:10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., J. Neelin, and M. Ghil, 1994: El Niño on the devil’s staircase: Annual subharmonic steps to chaos. Science, 264, 7072, doi:10.1126/science.264.5155.70.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., J. Neelin, and M. Ghil, 1996: El Niño/Southern Oscillation and the annual cycle: Subharmonic frequency-locking and aperiodicity. Physica D, 98, 442465, doi:10.1016/0167-2789(96)00111-X.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett.,33, L23708, doi:10.1029/2006GL027221.

  • Jin, F.-F., L. Lin, A. Timmmerman, and J. Zhao, 2007: Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys. Res. Lett., 34, L03807, doi:10.1029/2006GL027372.

    • Search Google Scholar
    • Export Citation
  • Johnson, S., D. Battisti, and E. Sarachik, 2000: Empirically derived Markov models and prediction of tropical Pacific sea surface temperature anomalies. J. Climate, 13, 317, doi:10.1175/1520-0442(2000)013<0003:EDMMAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kallummal, R., and B. Kirtman, 2008: Validity of a linear stochastic view of ENSO in an ACGCM. J. Atmos. Sci., 65, 38603879, doi:10.1175/2008JAS2286.1.

    • Search Google Scholar
    • Export Citation
  • Kessler, W., and R. Kleeman, 2000: Rectification of the Madden–Julian oscillation into the ENSO cycle. J. Climate, 13, 35603575, doi:10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kessler, W., M. McPhaden, and K. Weickmann, 1995: Forcing of the intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res., 100, 10 61310 631, doi:10.1029/95JC00382.

    • Search Google Scholar
    • Export Citation
  • Kralemann, B., L. Cimponeriu, M. Rosenblum, A. Pikovsky, and R. Mrowka, 2008: Phase dynamics of coupled oscillators reconstructed from data. Phys. Rev. E,77, 066205, doi:10.1103/PhysRevE.77.066205.

  • Larkin, N. K., and D. E. Harrison, 2002: ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Climate, 15, 11181140, doi:10.1175/1520-0442(2002)015<1118:EWENOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., J. P. Boulanger, C. Menkes, and H. Spencer, 2006: Influence of the seasonal cycle on the termination of El Niño events in a coupled general circulation model. J. Climate, 19, 18501868, doi:10.1175/JCLI3706.1.

    • Search Google Scholar
    • Export Citation
  • Levine, A. F., and F.-F. Jin, 2010: Noise-induced instability in the ENSO recharge oscillator. J. Atmos. Sci., 67, 529542, doi:10.1175/2009JAS3213.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2002: A simple model study of ENSO suppression by external periodic forcing. J. Climate, 15, 10881098, doi:10.1175/1520-0442(2002)015<1088:ASMSOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, N. Schneider, M. Stuecker, and M. England, 2012: The Effect of the South Pacific convergence zone on the termination of El Niño events and the meridional asymmetry of ENSO. J. Climate, 25, 55665586, doi:10.1175/JCLI-D-11-00332.1.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, doi:10.1126/science.1132588.

    • Search Google Scholar
    • Export Citation
  • Mettin, R., U. Parlitz, and W. Lauterborn, 1993: Bifurcation structure of the driven van der Pol oscillator. Int. J. Bifurcat. Chaos, 3, 15291555, doi:10.1142/S0218127493001203.

    • Search Google Scholar
    • Export Citation
  • Neelin, J., and F.-F. Jin, 1993a: Modes of interannual tropical ocean–atmosphere interaction—A unified view. Part I: Numerical results. J. Atmos. Sci., 50, 34773503, doi:10.1175/1520-0469(1993)050<3477:MOITOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J., and F.-F. Jin, 1993b: Modes of interannual tropical ocean–atmosphere interaction—A unified view. Part III: Analytical results in fully coupled cases. J. Atmos. Sci., 50, 35233540, doi:10.1175/1520-0469(1993)050<3523:MOITOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neelin, J., D. Battisti, A. Hirst, F. Jin, Y. Wakata, T. Yamagata, and S. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290, doi:10.1029/97JC03424.

    • Search Google Scholar
    • Export Citation
  • Pan, A., Q. Liu, and Z. Liu, 2005: Periodic forcing and ENSO suppression in the Cane–Zebiak model. J. Oceanogr., 61, 109113, doi:10.1007/s10872-005-0023-5.

    • Search Google Scholar
    • Export Citation
  • Pasmanter, R., and A. Timmermann, 2003: Cyclic Markov chains with an application to an intermediate ENSO model. Nonlinear Processes Geophys., 10, 197210, doi:10.5194/npg-10-197-2003.

    • Search Google Scholar
    • Export Citation
  • Philander, S., 1983: El Niño Southern Oscillation phenomena. Nature, 302, 295301, doi:10.1038/302295a0.

  • Philander, S., T. Yamagata, and R. Pacanowski, 1984: Unstable air–sea interactions in the tropics. J. Atmos. Sci., 41, 604613, doi:10.1175/1520-0469(1984)041<0604:UASIIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pikovksy, A., M. Rosenblum, and J. Kurths, 2000: Phase synchronization in regular and chaotic systems. Int. J. Bifurcat. Chaos, 10, 22912305, doi:10.1142/S0218127400001481.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E., and T. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, T., R. Reynolds, T. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Stein, K., N. Schneider, A. Timmermann, and F.-F. Jin, 2010: Seasonal synchronization of ENSO events in a linear stochastic model. J. Climate, 23, 56295643, doi:10.1175/2010JCLI3292.1.

    • Search Google Scholar
    • Export Citation
  • Stein, K., N. Schneider, and A. Timmermann, 2011: Phase synchronization of the El Niño–Southern Oscillation with the annual cycle. Phys. Rev. Lett.,107, 128501, doi:10.1103/PhysRevLett.107.128501.

  • Stuecker, M. F., A. Timmermann, F.-F. Jin, S. McGregor, and H.-L. Ren, 2013: A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat. Geosci., 6, 540544, doi:10.1038/ngeo1826.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 3283–3287, doi:10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. Stouffer, and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, C., and D. Battisti, 2000: A linear stochastic dynamical model of ENSO. Part I: Model development. J. Climate, 13, 28182832, doi:10.1175/1520-0442(2000)013<2818:ALSDMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and P. J. Webster, 1998: The annual cycle of persistence in the El Niño/Southern Oscillation. Quart. J. Roy. Meteor. Soc., 124, 19852004, doi:10.1002/qj.49712455010.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, doi:10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., E. Stone, M. Cane, and H. Jarosh, 1994: El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific ocean–atmosphere oscillator. Science, 264, 7274, doi:10.1126/science.264.5155.72.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., S. Zebiak, and M. Cane, 1995: Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the quasi-periodicity route to chaos. J. Atmos. Sci., 52, 293306, doi:10.1175/1520-0469(1995)052<0293:IALTTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., S. Zebiak, and M. Cane, 1997: Mechanisms of seasonal–ENSO interaction. J. Atmos. Sci., 54, 6171, doi:10.1175/1520-0469(1997)054<0061:MOSEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van der Pol, B., 1927: Forced oscillations in a circuit with non-linear resistance (reception with reactive triode). London Edinburgh Dublin Philos. Mag.,3, 6580.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Z. Fang, 1996: Chaotic oscillations of tropical climate: A dynamic system theory for ENSO. J. Atmos. Sci., 53, 27862802, doi:10.1175/1520-0469(1996)053<2786:COOTCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, R. Lukas, and S. An, 1999: A possible mechanism for ENSO turnabouts. J. Climate, 11, 21912199.

  • Xue, Y., M. Cane, and S. Zebiak, 1997: Predictability of a coupled model of ENSO using singular vector analysis. Part I: Optimal growth in seasonal background and ENSO cycles. Mon. Wea. Rev., 125, 20432056, doi:10.1175/1520-0493(1997)125<2043:POACMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yan, B., and R. Wu, 2007: Relative roles of different components of the basic state in the phase locking of El Niño mature phases. J. Climate, 20, 42674277, doi:10.1175/JCLI4242.1.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S., and M. Cane, 1987: A model ENSO. Mon. Wea. Rev., 115, 22622278, doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1565 370 23
PDF Downloads 1144 253 20