The Response of Large-Scale Circulation to Obliquity-Induced Changes in Meridional Heating Gradients

Damianos F. Mantsis Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Damianos F. Mantsis in
Current site
Google Scholar
PubMed
Close
,
Benjamin R. Lintner Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Benjamin R. Lintner in
Current site
Google Scholar
PubMed
Close
,
Anthony J. Broccoli Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Anthony J. Broccoli in
Current site
Google Scholar
PubMed
Close
,
Michael P. Erb Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Michael P. Erb in
Current site
Google Scholar
PubMed
Close
,
Amy C. Clement University of Miami, Miami, Florida

Search for other papers by Amy C. Clement in
Current site
Google Scholar
PubMed
Close
, and
Hyo-Seok Park School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Hyo-Seok Park in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The inter- and intrahemispheric climate responses to a change in obliquity are investigated using the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1. (GFDL CM2.1). Reduced obliquity causes a weakening of the seasonal insolation contrast between the summer and winter hemispheres and a strengthening of the meridional insolation gradient within the summer hemisphere. The interhemispheric insolation change is associated with weakening of the cross-equatorial Hadley circulation and reduced heat transport from the summer hemisphere to the winter hemisphere, in both the ocean and atmosphere. In contrast, the intrahemispheric insolation change is associated with increased midlatitude summer eddy activity as seen by the increased atmospheric heat transport at those latitudes. Analysis of the zonal mean atmospheric meridional overturning circulation on isentropic surfaces confirms the increase of the midlatitude eddy circulation, which is driven by changes of sensible and latent heat fluxes, as well as changes in the stratification or distribution of entropy. It is suggested that the strengthening of this circulation is associated with an equatorward shift of the ascending branch of the winter Hadley cell.

Denotes Open Access content.

Corresponding author address: Damianos F. Mantsis, Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901-8551. E-mail: dmantsis@envsci.rutgers.edu

Abstract

The inter- and intrahemispheric climate responses to a change in obliquity are investigated using the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1. (GFDL CM2.1). Reduced obliquity causes a weakening of the seasonal insolation contrast between the summer and winter hemispheres and a strengthening of the meridional insolation gradient within the summer hemisphere. The interhemispheric insolation change is associated with weakening of the cross-equatorial Hadley circulation and reduced heat transport from the summer hemisphere to the winter hemisphere, in both the ocean and atmosphere. In contrast, the intrahemispheric insolation change is associated with increased midlatitude summer eddy activity as seen by the increased atmospheric heat transport at those latitudes. Analysis of the zonal mean atmospheric meridional overturning circulation on isentropic surfaces confirms the increase of the midlatitude eddy circulation, which is driven by changes of sensible and latent heat fluxes, as well as changes in the stratification or distribution of entropy. It is suggested that the strengthening of this circulation is associated with an equatorward shift of the ascending branch of the winter Hadley cell.

Denotes Open Access content.

Corresponding author address: Damianos F. Mantsis, Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901-8551. E-mail: dmantsis@envsci.rutgers.edu
Save
  • Berger, A., and M. F. Loutre, 1991: Insolation values for the climate of the last 10 million years. Quat. Sci. Rev., 10, 297–317, doi:10.1016/0277-3791(91)90033-Q.

    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and T. Schneider, 2010: Regime transitions of steady and time-dependent Hadley circulations: Comparison of axisymmetric and eddy-permitting simulations. J. Atmos. Sci., 67, 1643–1654, doi:10.1175/2009JAS3294.1.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett.,33, L01702, doi:10.1029/2005GL024546.

  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477–496, doi:10.1007/s00382-005-0040-5.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643–674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Dima, I. M., and J. M. Wallace, 2003: On the seasonality of the Hadley cell. J. Atmos. Sci., 60, 1522–1527, doi:10.1175/1520-0469(2003)060<1522:OTSOTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Erb, M. P., A. J. Broccoli, and A. C. Clement, 2013: The contribution of radiative feedbacks to orbitally driven climate change. J. Climate, 26, 5897–5914, doi:10.1175/JCLI-D-12-00419.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2000: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Climate, 58, 943–948, doi:10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515–533, doi:10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci., 56, 1688–1697, doi:10.1175/1520-0469(1999)056<1688:TSBOTZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hewitt, C. D., and J. F. B. Mitchell, 1998: A fully coupled GCM simulation of the climate of the mid-Holocene. Geophys. Res. Lett., 25, 361–364, doi:10.1029/97GL03721.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and J. Lu, 2012: Expansion of the Hadley cell under global warming: Winter versus summer. J. Climate, 25, 8387–8393, doi:10.1175/JCLI-D-12-00323.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 3521–3532, doi:10.1175/2007JCLI2146.1.

    • Search Google Scholar
    • Export Citation
  • Laliberté, F., T. Shaw, and O. Pauluis, 2012: Moist recirculation and water vapor transport on dry isentropes. J. Atmos. Sci., 69, 875–890, doi:10.1175/JAS-D-11-0124.1.

    • Search Google Scholar
    • Export Citation
  • Lawrence, K. T., Z. Liu, and T. D. Herbert, 2006: Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science, 312, 79–83, doi:10.1126/science.1120395.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and T. D. Herbert, 2004: High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch. Nature, 427, 720–723, doi:10.1038/nature02338.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 5835–5851, doi:10.1175/2008JCLI2200.1.

    • Search Google Scholar
    • Export Citation
  • Mantsis, D. F., and A. C. Clement, 2009: Simulated variability in the mean meridional atmospheric circulation over the 20th century. Geophys. Res. Lett., 36, L06704, doi:10.1029/2008GL036741.

    • Search Google Scholar
    • Export Citation
  • Mantsis, D. F., A. C. Clement, A. J. Broccoli, and M. P. Erb, 2011: Climate feedbacks in response to changes in obliquity. J. Climate, 24, 2830–2845, doi:10.1175/2010JCLI3986.1.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., A. Czaja, and R. Korty, 2008: The global atmospheric circulation on moist isentropes. Science, 321, 1075–1078, doi:10.1126/science.1159649.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., A. Czaja, and R. Korty, 2010: The global atmospheric circulation in moist isentropic coordinates. J. Climate, 23, 3077–3093, doi:10.1175/2009JCLI2789.1.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., T. Shaw, and F. Laliberté, 2011: A statistical generalization of the transformed Eulerian-mean circulation for an arbitrary vertical coordinate system. J. Atmos. Sci., 68, 1766–1783, doi:10.1175/2011JAS3711.1.

    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1954: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 6, 273–286, doi:10.1111/j.2153-3490.1954.tb01123.x.

    • Search Google Scholar
    • Export Citation
  • Raymo, E. M., and K. Nisancioglu, 2003: The 41 kyr world: Milankovitch’s other unsolved mystery. Paleoceanography, 18, 1011, doi:10.1029/2002PA000791.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655–688, doi:10.1146/annurev.earth.34.031405.125144.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., and S. Bordoni, 2008: Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J. Atmos. Sci., 65, 915–934, doi:10.1175/2007JAS2415.1.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and E.-P. Lim, 2009: Biases in the calculation of Southern Hemisphere mean baroclinic eddy growth rate. Geophys. Res. Lett., 36, L01707, doi:10.1029/2008GL036320.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 3433–3443, doi:10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vimeux, F., V. Masson, J. Jouzel, M. Stievenard, and J. R. Petit, 1999: Glacial–interglacial changes in the ocean surface conditions in the Southern Hemisphere. Nature, 398, 410–413, doi:10.1038/18860.

    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 3333–3350, doi:10.1175/JAS3821.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., and O. Pauluis, 2013: Examination of isentropic circulation response to a doubling of carbon dioxide using a statistical transformed Eulerian mean streamfunction. J. Atmos. Sci., 70, 1649–1667, doi:10.1175/JAS-D-12-0235.1.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., and A. J. Broccoli, 2008: Equilibrium response of an atmosphere-mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21, 4399–4423, doi:10.1175/2008JCLI2172.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 1853–1860, doi:10.1175/JCLI3460.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 837 251 28
PDF Downloads 747 211 14