Modulation of Marine Low Clouds Associated with the Tropical Intraseasonal Variability over the Eastern Pacific

Xianan Jiang Joint Institute for Regional Earth System Science & Engineering, University of California, Los Angeles, and Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Xianan Jiang in
Current site
Google Scholar
PubMed
Close
,
Terence L. Kubar Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, and Colorado State University, Fort Collins, Colorado

Search for other papers by Terence L. Kubar in
Current site
Google Scholar
PubMed
Close
,
Sun Wong Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Sun Wong in
Current site
Google Scholar
PubMed
Close
,
William S. Olson Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland

Search for other papers by William S. Olson in
Current site
Google Scholar
PubMed
Close
, and
Duane E. Waliser Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Duane E. Waliser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Owing to its profound influences on global energy balance, accurate representation of low cloud variability in climate models is an urgent need for future climate projection. In the present study, marine low cloud variability on intraseasonal time scales is characterized, with a particular focus over the Pacific basin during boreal summer and its association with the dominant mode of tropical intraseasonal variability (TISV) over the eastern Pacific (EPAC) intertropical convergence zone (ITCZ). Analyses indicate that, when anomalous TISV convection is enhanced over the elongated EPAC ITCZ, reduction of low cloud fraction (LCF) is evident over a vast area of the central North Pacific. Subsequently, when the enhanced TISV convection migrates to the northern part of the EPAC warm pool, a “comma shaped” pattern of reduced LCF prevails over the subtropical North Pacific, along with a pronounced reduction of LCF present over the southeast Pacific (SEPAC). Further analyses indicate that surface latent heat fluxes and boundary heights induced by anomalous low-level circulation through temperature advection and changes of total wind speed, as well as midlevel vertical velocity associated with the EPAC TISV, could be the most prominent factors in regulating the intraseasonal variability of LCF over the North Pacific. For the SEPAC, temperature anomalies at the top of the boundary inversion layer between 850 and 800 hPa play a critical role in the local LCF intraseasonal variations. Results presented in this study provide not only improved understanding of variability of marine low clouds and the underlying physics, but also a prominent benchmark in constraining and evaluating the representation of low clouds in climate models.

Corresponding author address: Dr. Xianan Jiang, Jet Propulsion Laboratory, California Institute of Technology, MS 233-300, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: xianan@jifresse.ucla.edu

Abstract

Owing to its profound influences on global energy balance, accurate representation of low cloud variability in climate models is an urgent need for future climate projection. In the present study, marine low cloud variability on intraseasonal time scales is characterized, with a particular focus over the Pacific basin during boreal summer and its association with the dominant mode of tropical intraseasonal variability (TISV) over the eastern Pacific (EPAC) intertropical convergence zone (ITCZ). Analyses indicate that, when anomalous TISV convection is enhanced over the elongated EPAC ITCZ, reduction of low cloud fraction (LCF) is evident over a vast area of the central North Pacific. Subsequently, when the enhanced TISV convection migrates to the northern part of the EPAC warm pool, a “comma shaped” pattern of reduced LCF prevails over the subtropical North Pacific, along with a pronounced reduction of LCF present over the southeast Pacific (SEPAC). Further analyses indicate that surface latent heat fluxes and boundary heights induced by anomalous low-level circulation through temperature advection and changes of total wind speed, as well as midlevel vertical velocity associated with the EPAC TISV, could be the most prominent factors in regulating the intraseasonal variability of LCF over the North Pacific. For the SEPAC, temperature anomalies at the top of the boundary inversion layer between 850 and 800 hPa play a critical role in the local LCF intraseasonal variations. Results presented in this study provide not only improved understanding of variability of marine low clouds and the underlying physics, but also a prominent benchmark in constraining and evaluating the representation of low clouds in climate models.

Corresponding author address: Dr. Xianan Jiang, Jet Propulsion Laboratory, California Institute of Technology, MS 233-300, 4800 Oak Grove Drive, Pasadena, CA 91109. E-mail: xianan@jifresse.ucla.edu
Save
  • Berg, W., T. S. L’Ecuyer, and J. M. Haynes, 2010: The distribution of rainfall over oceans from spaceborne radars. J. Appl. Meteor. Climatol., 49, 535543, doi:10.1175/2009JAMC2330.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., E. Klinker, A. K. Betts, and J. A. Coakley Jr., 1995: Comparison of ceilometer, satellite, and synoptic measurements of boundary-layer cloudiness and the ECMWF diagnostic cloud parameterization scheme during ASTEX. J. Atmos. Sci., 52, 27362751, doi:10.1175/1520-0469(1995)052<2736:COCSAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16 60116 615, doi:10.1029/JD095iD10p16601.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropical–extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199, doi:10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., W. S. Olson, C.-L. Shie, T. S. L’Ecuyer, and W.-K. Tao, 2009: Combining satellite microwave radiometer and radar observations to estimate atmospheric heating profiles. J. Climate, 22, 63566376, doi:10.1175/2009JCLI3020.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, doi:10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and K. C. Mo, 1997: Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. J. Climate, 10, 223244, doi:10.1175/1520-0442(1997)010<0223:PNPCAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubanks, P. A., M. D. King, S. Platnick, and R. A. Pincus, 2008: MODIS atmosphere L3 gridded product. MODIS Algorithm Theoretical Basis Doc. ATBD-MOD-30, 96 pp.

  • Huffman, G. J., R. F. Adler, B. Rudolf, U. Schneider, and P. R. Keehn, 1995: Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information. J. Climate, 8, 12841295, doi:10.1175/1520-0442(1995)008<1284:GPEBOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and N.-C. Lau, 2008: Intraseasonal teleconnection between North American and western North Pacific monsoons with 20-day time scale. J. Climate, 21, 26642679, doi:10.1175/2007JCLI2024.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and D. E. Waliser, 2008: Northward propagation of the subseasonal variability over the eastern Pacific warm pool. Geophys. Res. Lett., 35, L09814, doi:10.1029/2008GL033723.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and D. E. Waliser, 2009: Two dominant subseasonal variability modes of the eastern Pacific ITCZ. Geophys. Res. Lett., 36, L04704, doi:10.1029/2008GL036820.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, doi:10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2009: Vertical heating structures associated with the MJO as characterized by TRMM estimates, ECMWF reanalyses, and forecasts: A case study during 1998/99 winter. J. Climate, 22, 60016020, doi:10.1175/2009JCLI3048.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2011: Vertical diabatic heating structure of the MJO: Intercomparison between recent reanalyses and TRMM estimates. Mon. Wea. Rev., 139, 32083223, doi:10.1175/2011MWR3636.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., M. Zhao, and D. E. Waliser, 2012a: Modulation of tropical cyclones over the eastern Pacific by the intraseasonal variability simulated in an AGCM. J. Climate, 25, 65246538, doi:10.1175/JCLI-D-11-00531.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2012b: Simulation of the intraseasonal variability over the eastern Pacific ITCZ in climate models. Climate Dyn., 39, 617636, doi:10.1007/s00382-011-1098-x.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., E. D. Maloney, J.-L. F. Li, and D. E. Waliser, 2013: Simulations of the eastern North Pacific intraseasonal variability in CMIP5 GCMs. J. Climate, 26, 34893510, doi:10.1175/JCLI-D-12-00526.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and X. Lin, 1997: Episodic trade wind regimes over the western Pacific warm pool. J. Atmos. Sci., 54, 20202034, doi:10.1175/1520-0469(1997)054<2020:ETWROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., 1997: Synoptic variability of low-cloud properties and meteorological parameters in the subtropical trade wind boundary layer. J. Climate, 10, 20182039, doi:10.1175/1520-0442(1997)010<2018:SVOLCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., D. L. Hartmann, and J. R. Norris, 1995: On the relationships among low-cloud structure, sea surface temperature, and atmospheric circulation in the summertime northeast Pacific. J. Climate, 8, 11401155, doi:10.1175/1520-0442(1995)008<1140:OTRALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 14071436, doi:10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. E. Waliser, and J.-L. Li, 2011: Boundary layer and cloud structure controls on tropical low cloud cover using A-Train satellite data and ECMWF analyses. J. Climate, 24, 194215, doi:10.1175/2010JCLI3702.1.

    • Search Google Scholar
    • Export Citation
  • Kubar, T. L., D. E. Waliser, J.-L. Li, and X. Jiang, 2012: On the annual cycle, variability, and correlations of oceanic low-topped clouds with large-scale circulation using Aqua MODIS and ERA-Interim. J. Climate, 25, 61526174, doi:10.1175/JCLI-D-11-00478.1.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., and D. E. Waliser, 2012: Intraseasonal Variability in the Atmosphere–Ocean Climate System.2nd ed. Springer, 613 pp.

  • L’Ecuyer, T. S., and G. McGarragh, 2010: A 10-year climatology of tropical radiative heating and its vertical structure from TRMM observations. J. Climate, 23, 519541, doi:10.1175/2009JCLI3018.1.

    • Search Google Scholar
    • Export Citation
  • Ma, D., and Z. Kuang, 2011: Modulation of radiative heating by the Madden–Julian oscillation and convectively coupled Kelvin waves as observed by CloudSat. Geophys. Res. Lett., 38, L21813, doi:10.1029/2011GL049734.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and S. K. Esbensen, 2003: The amplification of east Pacific Madden–Julian oscillation convection and wind anomalies during June–November. J. Climate, 16, 34823497, doi:10.1175/1520-0442(2003)016<3482:TAOEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and S. K. Esbensen, 2007: Satellite and buoy observations of boreal summer intraseasonal variability in the tropical northeast Pacific. Mon. Wea. Rev., 135, 319, doi:10.1175/MWR3271.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., D. B. Chelton, and S. K. Esbensen, 2008: Subseasonal SST variability in the tropical eastern North Pacific during boreal summer. J. Climate, 21, 41494167, doi:10.1175/2007JCLI1856.1.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, doi:10.1256/qj.02.123.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and S. A. Klein, 2000: Low cloud type over the ocean from surface observations. Part III: Relationship to vertical motion and the regional surface synoptic environment. J. Climate, 13, 245256, doi:10.1175/1520-0442(2000)013<0245:LCTOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1984: Stratocumulus cloud deepening through entrainment. Tellus,36A, 446–457, doi: 10.1111/j.1600-0870.1984.tb00261.x.

  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Ronca, R. E., and D. S. Battisti, 1997: Anomalous sea surface temperatures and local air–sea energy exchange on intraannual timescales in the northeastern subtropical Pacific. J. Climate, 10, 102117, doi:10.1175/1520-0442(1997)010<0102:ASSTAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rozendaal, M. A., C. B. Leovy, and S. A. Klein, 1995: An observational study of diurnal variations of marine stratiform cloud. J. Climate, 8, 17951809, doi:10.1175/1520-0442(1995)008<1795:AOSODV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., E. D. Maloney, S.-P. Xie, J. Hafner, and J. Shaman, 2013: Remote forcing versus local feedback of east Pacific intraseasonal variability during boreal summer. J. Climate, 26, 35753596, doi:10.1175/JCLI-D-12-00499.1.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., and K. Nakamura, 2000: TRMM radar observations of shallow precipitation over the tropical oceans. J. Climate, 13, 41074124, doi:10.1175/1520-0442(2000)013<4107:TROOSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., 1990: Sensitivity of the Earth’s radiation budget to changes in low clouds. Nature, 343, 4951, doi:10.1038/343049a0.

  • Small, R. J., S.-P. Xie, E. D. Maloney, S. P. de Szoeke, and T. Miyama, 2011: Intraseasonal variability in the far-east Pacific: Investigation of the role of air–sea coupling in a regional coupled model. Climate Dyn., 36, 867890, doi:10.1007/s00382-010-0786-2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and T. J. Greenwald, 1991: The Earth’s radiation budget and its relation to atmospheric hydrology: 2. Observations of cloud effects. J. Geophys. Res., 96, 15 32515 340, doi:10.1029/91JD00972.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., A. Beljaars, S. Bordoni, C. Holloway, M. Köhler, S. Krueger, V. Savic-Jovcic, and Y. Zhang, 2007: On the structure of the lower troposphere in the summertime stratocumulus regime of the northeast Pacific. Mon. Wea. Rev., 135, 9851005, doi:10.1175/MWR3427.1.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., and J. S. Nasstrom, 1982: Examples of extended empirical orthogonal function analyses. Mon. Wea. Rev., 110, 481485, doi:10.1175/1520-0493(1982)110<0481:EOEEOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wen, M., S. Yang, W. Higgins, and R. Zhang, 2011: Characteristics of the dominant modes of atmospheric quasi-biweekly oscillation over tropical–subtropical Americas. J. Climate, 24, 3956–3970, doi:10.1175/2011JCLI3916.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, doi:10.1175/MWR-D-11-00121.1.

  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, doi:10.1175/JCLI3988.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., D. Painemal, S. de Szoeke, and C. Fairall, 2009: Stratocumulus cloud-top height estimates and their climatic implications. J. Climate, 22, 46524666, doi:10.1175/2009JCLI2708.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 151 52 7
PDF Downloads 84 34 5