The Impact of the El Niño–Southern Oscillation and Atlantic Meridional Mode on Seasonal Atlantic Tropical Cyclone Activity

Christina M. Patricola Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Christina M. Patricola in
Current site
Google Scholar
PubMed
Close
,
R. Saravanan Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by R. Saravanan in
Current site
Google Scholar
PubMed
Close
, and
Ping Chang Department of Oceanography, and Department of Atmospheric Sciences, Texas A&M University, College Station, Texas, and Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China

Search for other papers by Ping Chang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atlantic tropical cyclone (TC) activity is influenced by interannual tropical Pacific sea surface temperature (SST) variability characterized by the El Niño–Southern Oscillation (ENSO), as well as interannual-to-decadal variability in the interhemispheric gradient in tropical Atlantic SST characterized by the Atlantic meridional mode (AMM). Individually, the negative AMM phase (cool northern and warm southern tropical Atlantic SST anomalies) and El Niño each inhibit Atlantic TCs, and vice versa. The impact of concurrent strong phases of the ENSO and AMM on Atlantic TC activity is investigated. The response of the atmospheric environment relevant for TCs is evaluated with a genesis potential index.

Composites of observed accumulated cyclone energy (ACE) suggest that ENSO and AMM can amplify or dampen the influence of one another on Atlantic TCs. To support the observational analysis, numerical simulations are performed using a 27-km resolution regional climate model. The control simulation uses observed SST and lateral boundary conditions (LBCs) of 1980–2000, and perturbed experiments are forced with ENSO phases through LBCs and eastern tropical Pacific SST and AMM phases through Atlantic SST.

Simultaneous strong El Niño and strongly positive AMM, as well as strong concurrent La Niña and negative AMM, produce near-average Atlantic ACE suggesting compensation between the two influences, consistent with the observational analysis. Strong La Niña and strongly positive AMM together produce extremely intense Atlantic TC activity, supported largely by above average midtropospheric humidity, while strong El Niño and negative AMM together are not necessary conditions for significantly reduced Atlantic tropical cyclone activity.

Corresponding author address: Christina M. Patricola, Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77843. E-mail: cmd58@cornell.edu

This article is included in the US CLIVAR Hurricanes and Climate special collection.

Abstract

Atlantic tropical cyclone (TC) activity is influenced by interannual tropical Pacific sea surface temperature (SST) variability characterized by the El Niño–Southern Oscillation (ENSO), as well as interannual-to-decadal variability in the interhemispheric gradient in tropical Atlantic SST characterized by the Atlantic meridional mode (AMM). Individually, the negative AMM phase (cool northern and warm southern tropical Atlantic SST anomalies) and El Niño each inhibit Atlantic TCs, and vice versa. The impact of concurrent strong phases of the ENSO and AMM on Atlantic TC activity is investigated. The response of the atmospheric environment relevant for TCs is evaluated with a genesis potential index.

Composites of observed accumulated cyclone energy (ACE) suggest that ENSO and AMM can amplify or dampen the influence of one another on Atlantic TCs. To support the observational analysis, numerical simulations are performed using a 27-km resolution regional climate model. The control simulation uses observed SST and lateral boundary conditions (LBCs) of 1980–2000, and perturbed experiments are forced with ENSO phases through LBCs and eastern tropical Pacific SST and AMM phases through Atlantic SST.

Simultaneous strong El Niño and strongly positive AMM, as well as strong concurrent La Niña and negative AMM, produce near-average Atlantic ACE suggesting compensation between the two influences, consistent with the observational analysis. Strong La Niña and strongly positive AMM together produce extremely intense Atlantic TC activity, supported largely by above average midtropospheric humidity, while strong El Niño and negative AMM together are not necessary conditions for significantly reduced Atlantic tropical cyclone activity.

Corresponding author address: Christina M. Patricola, Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77843. E-mail: cmd58@cornell.edu

This article is included in the US CLIVAR Hurricanes and Climate special collection.

Save
  • Arkin, P. A., 1982: The relationship between interannual variability in the 200-mb tropical wind field and the Southern Oscillation. Mon. Wea. Rev., 110, 13931404, doi:10.1175/1520-0493(1982)110<1393:TRBIVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Avila, L. A., 1991: Atlantic tropical systems of 1990. Mon. Wea. Rev., 119, 20272033, doi:10.1175/1520-0493(1991)119<2027:ATSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Belanger, J. I., V. T. Toma, J. A. Curry, P. J. Webster, and M. T. Jelinek, 2014: Climate dynamics of easterly waves in the North Atlantic and east Pacific. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 1A.6. [Available online at https://ams.confex.com/ams/31Hurr/webprogram/Paper245355.html.]

  • Bell, G. D., and M. Chelliah, 2006: Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J. Climate, 19, 590612, doi:10.1175/JCLI3659.1.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81, s1s50, doi:10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., M. Chelliah, K. Mo, S. B. Goldenberg, C. W. Landsea, E. Blake, and R. Pasch, 2005: NOAA: August 2005 update to Atlantic hurricane season outlook. [Available online at http://www.cpc.ncep.noaa.gov/products/outlooks/hurricane2005/August/hurricane.html.]

  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, doi:10.1007/BF01030791.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi:10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Bove, M. C., J. J. O’Brien, J. B. Eisner, C. W. Landsea, and X. Niu, 1998: Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Amer. Meteor. Soc., 79, 24772482, doi:10.1175/1520-0477(1998)079<2477:EOENOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, doi:10.1175/JCLI4282.1.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, 385, 516518, doi:10.1038/385516a0.

    • Search Google Scholar
    • Export Citation
  • Chang, P., Y. Fang, R. Saravanan, L. Ji, and H. Seidel, 2006: The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324328, doi:10.1038/nature05053.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, doi:10.1175/JCLI4953.1.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., and S. Hastenrath, 1995: Forcing of anomalous sea surface temperature evolution in the tropical Atlantic during Pacific warm events. J. Geophys. Res., 100, 15 83515 847, doi:10.1029/95JC01502.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., P. van der Vaart, and J. Marshall, 2002: A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Climate, 15, 32803290, doi:10.1175/1520-0442(2002)015<3280:ADSOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J.-J. Baik, and J. Kaplan, 1993: Upper-level eddy angular momentum flux and tropical cyclone intensity change. J. Atmos. Sci., 50, 11331147, doi:10.1175/1520-0469(1993)050<1133:ULEAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunstone, N. J., D. M. Smith, B. B. B. Booth, L. Hermanson, and R. Eade, 2013: Anthropogenic aerosol forcing of Atlantic tropical storms. Nat. Geosci., 6, 534539, doi:10.1038/ngeo1854.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, doi:10.1038/nature03906.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and D. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.

  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res., 102, 929945, doi:10.1029/96JC03296.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., J. Dunion, J. A. Foley, A. K. Heidinger, and C. S. Velden, 2006: New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys. Res. Lett., 33, L19813, doi:10.1029/2006GL026408.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, doi:10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., Y. Kushnir, and M. A. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13, 297311, doi:10.1175/1520-0442(2000)013<0297:IVOCRE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9, 11691187, doi:10.1175/1520-0442(1996)009<1169:PMFTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, doi:10.1126/science.1060040.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30-mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, doi:10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., and P. J. Klotzbach, 2005: Extended range forecast of Atlantic seasonal hurricane activity, individual monthly activity, and U.S. landfall strike probability for 2005. [Available online at http://hurricane.atmos.colostate.edu/forecasts/2005/aug2005/.]

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, doi:10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., 2011: The Influence of El Niño–Southern Oscillation and the Atlantic multidecadal oscillation on Caribbean tropical cyclone activity. J. Climate, 24, 721731, doi:10.1175/2010JCLI3705.1.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and W. M. Gray, 2008: Multidecadal variability in North Atlantic tropical cyclone activity. J. Climate, 21, 39293935, doi:10.1175/2008JCLI2162.1.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and W. M. Gray, 2013: Summary of the 2013 Atlantic tropical cyclone activity and verification of authors’ seasonal and two-week forecasts. 66 pp. [Available online at http://tropical.atmos.colostate.edu/forecasts/2013/nov2013/nov2013.pdf.]

  • Knutson, T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. Bull. Amer. Meteor. Soc., 88, 15491565, doi:10.1175/BAMS-88-10-1549.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 17671781, doi:10.1175/BAMS-88-11-1767.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, doi:10.1175/2010JCLI3497.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, doi:10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., R. A. Pielke Jr., A. M. Mestas-Nuñez, and J. A. Knaff, 1999: Atlantic basin hurricanes: Indices of climate changes. Climatic Change, 42, 89129, doi:10.1023/A:1005416332322.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2004: The Atlantic hurricane database re-analysis project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present, and Future, R. J. Murnane and K.-B. Liu, Eds., Columbia University Press, 177–221.

  • Mann, M. E., and K. A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87, 233241, doi:10.1029/2006EO240001.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and S. Häkkinen, 2001: Interannual variability in the tropical Atlantic and linkages to the Pacific. J. Climate, 14, 27402762, doi:10.1175/1520-0442(2001)014<2740:IVITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nobre, P., and J. Shukla, 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9, 24642479, doi:10.1175/1520-0442(1996)009<2464:VOSSTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr., and C. W. Landsea, 1999: La Niña, El Niño, and Atlantic hurricane damages in the United States. Bull. Amer. Meteor. Soc., 80, 20272033, doi:10.1175/1520-0477(1999)080<2027:LNAENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and P. Chang, 2000: Interaction between tropical Atlantic variability and El Niño–Southern Oscillation. J. Climate, 13, 21772194, doi:10.1175/1520-0442(2000)013<2177:IBTAVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Servain, J., I. Wainer, J. P. McCreary, and A. Dessier, 1999: Relationship between the equatorial and meridional modes of climatic variability in the tropical Atlantic. Geophys. Res. Lett., 26, 485488, doi:10.1029/1999GL900014.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Smirnov, D., and D. J. Vimont, 2011: Variability of the Atlantic meridional mode during the Atlantic hurricane season. J. Climate, 24, 14091424, doi:10.1175/2010JCLI3549.1.

    • Search Google Scholar
    • Export Citation
  • Smith, S. R., J. Brolley, J. J. O’Brien, and C. A. Tartaglione, 2007: ENSO’s impact on regional U.S. hurricane activity. J. Climate, 20, 14041414, doi:10.1175/JCLI4063.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Tang, B. H., and J. D. Neelin, 2004: ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett., 31, L24204, doi:10.1029/2004GL021072.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., and Y. Kurihara, 1981: A numerical study on the effects of environmental flow on tropical storm genesis. Mon. Wea. Rev., 109, 24872506, doi:10.1175/1520-0493(1981)109<2487:ANSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • U.S. CLIVAR, 2011: U.S. CLIVAR launches two new working groups. U.S. CLIVAR Variations, 9 (1), U.S. CLIVAR Project Office, Washington, DC, 12 pp. [Available online at http://www.usclivar.org/sites/default/files/Variations-V9N1-1.pdf.]

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, doi:10.1029/2007GL029683.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and J. L. Anderson, 2001: Sensitivity of Atlantic tropical storm frequency to ENSO and interdecadal variability of SSTs in an ensemble of AGCM integrations. J. Climate, 14, 533545, doi:10.1175/1520-0442(2001)014<0533:SOATSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., 1997: Objective detection of tropical cyclones in high-resolution analyses. Mon. Wea. Rev., 125, 17671779, doi:10.1175/1520-0493(1997)125<1767:ODOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., C. Wang, W. Zhou, D. Wang, and J. Song, 2011: Teleconnected influence of North Atlantic sea surface temperature on the El Niño onset. Climate Dyn., 37, 663676, doi:10.1007/s00382-010-0833-z.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846, doi:10.1126/science.1116448.

    • Search Google Scholar
    • Export Citation
  • Wong, M. L. M., and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 18591876, doi:10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and Y. Tanimoto, 1998: A pan-Atlantic decadal climate oscillation. Geophys. Res. Lett., 25, 21852188, doi:10.1029/98GL01525.

    • Search Google Scholar
    • Export Citation
  • Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp.

  • Zhu, X., R. Saravanan, and P. Chang, 2012: Influence of mean flow on the ENSO–vertical wind shear relationship over the northern tropical Atlantic. J. Climate, 25, 858864, doi:10.1175/JCLI-D-11-00213.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3475 1269 39
PDF Downloads 1546 351 9