Abstract
Planning of mitigation and adaptation strategies to a changing climate can benefit from a good understanding of climate change impacts on human life and local society, which leads to an increasing requirement for reliable projections of future climate change at regional scales. This paper presents an ensemble of high-resolution regional climate simulations for the province of Ontario, Canada, developed with the Providing Regional Climates for Impacts Studies (PRECIS) modeling system. A Bayesian statistical model is proposed through an advance to the method proposed by Tebaldi et al. for generating probabilistic projections of temperature changes at gridpoint scale by treating the unknown quantities of interest as random variables to quantify their uncertainties in a statistical way. Observations for present climate and simulations from the ensemble are fed into the statistical model to derive posterior distributions of all the uncertain quantities through a Markov chain Monte Carlo (MCMC) sampling algorithm. Detailed analyses at 12 selected weather stations are conducted to investigate the practical significance of the proposed statistical model. Following that, maps of projected temperature changes at different probability levels are presented to help understand the spatial patterns across the entire province. The analysis shows that there is likely to be a significant warming trend throughout the twenty-first century. It also suggests that people in Ontario are very likely to suffer a change greater than 2°C to mean temperature in the forthcoming decades and very unlikely to suffer a change greater than 10°C to the end of this century.