High-Resolution Probabilistic Projections of Temperature Changes over Ontario, Canada

Xiuquan Wang Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, Canada

Search for other papers by Xiuquan Wang in
Current site
Google Scholar
PubMed
Close
,
Guohe Huang Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, Canada, and SC Institute for Energy, Environment and Sustainability Research, North China Electric Power University, Beijing, China

Search for other papers by Guohe Huang in
Current site
Google Scholar
PubMed
Close
,
Qianguo Lin Key Laboratory of Regional Energy and Environmental Systems Optimization, Ministry of Education, North China Electric Power University, Beijing, China

Search for other papers by Qianguo Lin in
Current site
Google Scholar
PubMed
Close
, and
Jinliang Liu Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada

Search for other papers by Jinliang Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Planning of mitigation and adaptation strategies to a changing climate can benefit from a good understanding of climate change impacts on human life and local society, which leads to an increasing requirement for reliable projections of future climate change at regional scales. This paper presents an ensemble of high-resolution regional climate simulations for the province of Ontario, Canada, developed with the Providing Regional Climates for Impacts Studies (PRECIS) modeling system. A Bayesian statistical model is proposed through an advance to the method proposed by Tebaldi et al. for generating probabilistic projections of temperature changes at gridpoint scale by treating the unknown quantities of interest as random variables to quantify their uncertainties in a statistical way. Observations for present climate and simulations from the ensemble are fed into the statistical model to derive posterior distributions of all the uncertain quantities through a Markov chain Monte Carlo (MCMC) sampling algorithm. Detailed analyses at 12 selected weather stations are conducted to investigate the practical significance of the proposed statistical model. Following that, maps of projected temperature changes at different probability levels are presented to help understand the spatial patterns across the entire province. The analysis shows that there is likely to be a significant warming trend throughout the twenty-first century. It also suggests that people in Ontario are very likely to suffer a change greater than 2°C to mean temperature in the forthcoming decades and very unlikely to suffer a change greater than 10°C to the end of this century.

Corresponding author address: Guohe Huang, Institute for Energy, Environment and Sustainable Communities, University of Regina, 3737 Wascana Parkway, Regina SK S4S 0A2, Canada. E-mail: huang@iseis.org.

Abstract

Planning of mitigation and adaptation strategies to a changing climate can benefit from a good understanding of climate change impacts on human life and local society, which leads to an increasing requirement for reliable projections of future climate change at regional scales. This paper presents an ensemble of high-resolution regional climate simulations for the province of Ontario, Canada, developed with the Providing Regional Climates for Impacts Studies (PRECIS) modeling system. A Bayesian statistical model is proposed through an advance to the method proposed by Tebaldi et al. for generating probabilistic projections of temperature changes at gridpoint scale by treating the unknown quantities of interest as random variables to quantify their uncertainties in a statistical way. Observations for present climate and simulations from the ensemble are fed into the statistical model to derive posterior distributions of all the uncertain quantities through a Markov chain Monte Carlo (MCMC) sampling algorithm. Detailed analyses at 12 selected weather stations are conducted to investigate the practical significance of the proposed statistical model. Following that, maps of projected temperature changes at different probability levels are presented to help understand the spatial patterns across the entire province. The analysis shows that there is likely to be a significant warming trend throughout the twenty-first century. It also suggests that people in Ontario are very likely to suffer a change greater than 2°C to mean temperature in the forthcoming decades and very unlikely to suffer a change greater than 10°C to the end of this century.

Corresponding author address: Guohe Huang, Institute for Energy, Environment and Sustainable Communities, University of Regina, 3737 Wascana Parkway, Regina SK S4S 0A2, Canada. E-mail: huang@iseis.org.
Save
  • Allen, M. R., P. A. Stott, J. F. B. Mitchell, R. Schnur, and T. L. Delworth, 2000: Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature, 407, 617620, doi:10.1038/35036559.

    • Search Google Scholar
    • Export Citation
  • Barnett, D. N., S. J. Brown, J. M. Murphy, D. M. H. Sexton, and M. J. Webb, 2006: Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations. Climate Dyn., 26, 489511, doi:10.1007/s00382-005-0097-1.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., S. J. Mason, L. Goddard, D. G. Dewitt, and S. E. Zebiak, 2003: Multimodel ensembling in seasonal climate forecasting at IRI. Bull. Amer. Meteor. Soc., 84, 17831796, doi:10.1175/BAMS-84-12-1783.

    • Search Google Scholar
    • Export Citation
  • Bellprat, O., S. Kotlarski, D. Lüthi, and C. Schär, 2012: Exploring perturbed physics ensembles in a regional climate model. J. Climate, 25, 45824599, doi:10.1175/JCLI-D-11-00275.1.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., 2004: Tentative probabilistic temperature scenarios for northern Europe. Tellus, 56A, 89101, doi:10.1111/j.1600-0870.2004.00039.x.

    • Search Google Scholar
    • Export Citation
  • Brooks, S., 1998: Markov chain Monte Carlo method and its application. J. Roy. Stat. Soc., 47, 69100, doi:10.1111/1467-9884.00117.

  • Collins, M., B. B. B. Booth, G. R. Harris, J. M. Murphy, D. M. H. Sexton, and M. J. Webb, 2006: Towards quantifying uncertainty in transient climate change. Climate Dyn., 27, 127147, doi:10.1007/s00382-006-0121-0.

    • Search Google Scholar
    • Export Citation
  • Furrer, R., S. R. Sain, D. Nychka, and G. A. Meehl, 2007: Multivariate Bayesian analysis of atmosphere–ocean general circulation models. Environ. Ecol. Stat., 14, 249266, doi:10.1007/s10651-007-0018-z.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and R. Francisco, 2000: Evaluating uncertainties in the prediction of regional climate change. Geophys. Res. Lett., 27, 12951298, doi:10.1029/1999GL011016.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. O. Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method. J. Climate, 15, 11411158, doi:10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and L. O. Mearns, 2003: Probability of regional climate change based on the Reliability Ensemble Averaging (REA) method. Geophys. Res. Lett., 30, 1629, doi:10.1029/2003GL017130.

    • Search Google Scholar
    • Export Citation
  • Goldstein, H., and M. J. R. Healy, 1995: The graphical presentation of a collection of means. J. Roy. Stat. Soc., 158, 175177, doi:10.2307/2983411.

    • Search Google Scholar
    • Export Citation
  • Greene, A. M., L. Goddard, and U. Lall, 2006: Probabilistic multimodel regional temperature change projections. J. Climate, 19, 43264343, doi:10.1175/JCLI3864.1.

    • Search Google Scholar
    • Export Citation
  • Harris, G. R., D. M. H. Sexton, B. B. B. Booth, M. Collins, and J. M. Murphy, 2013: Probabilistic projections of transient climate change. Climate Dyn., 40, 29372972, doi:10.1007/s00382-012-1647-y.

    • Search Google Scholar
    • Export Citation
  • Hewitt, C. D., 2004: ENSEMBLES-based predictions of climate changes and their impacts. Eos, Trans. Amer. Geophys. Union, 85, 566566, doi:10.1029/2004EO520005.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds., 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

  • Jones, R. G., M. Noguer, D. C. Hassell, D. Hudson, S. S. Wilson, G. J. Jenkins, and J. F. B. Mitchell, 2004: Generating high resolution climate change scenarios using PRECIS. Met Office handbook, Exeter, United Kingdom, 40 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/6/5/PRECIS_Handbook.pdf.]

  • Karl, T. R., and K. E. Trenberth, 2003: Modern global climate change. Science, 302, 17191723, doi:10.1126/science.1090228.

  • Kendon, E. J., R. G. Jones, E. Kjellström, and J. M. Murphy, 2010: Using and designing GCM–RCM ensemble regional climate projections. J. Climate, 23, 64856503, doi:10.1175/2010JCLI3502.1.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., R. Furrer, C. Tebaldi, J. Cermak, and G. A. Meehl, 2010: Challenges in combining projections from multiple climate models. J. Climate, 23, 27392758, doi:10.1175/2009JCLI3361.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285, 15481550, doi:10.1126/science.285.5433.1548.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., C. M. Kishtawal, Z. Zhang, T. E. LaRow, D. R. Bachiochi, C. E. Williford, S. Gadgil, and S. Surendran, 2000: Multimodel ensemble forecasts for weather and seasonal climate. J. Climate, 13, 41964216, doi:10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, Q., R. N. Jones, M. Williams, B. Bryan, and W. Bellotti, 2005: Probabilistic distributions of regional climate change and their application in risk analysis of wheat production. Climate Res., 29, 41–52, doi:10.3354/cr029041.

    • Search Google Scholar
    • Export Citation
  • Manning, L. J., J. W. Hall, H. J. Fowler, C. G. Kilsby, and C. Tebaldi, 2009: Using probabilistic climate change information from a multimodel ensemble for water resources assessment. Water Resour. Res., 45, W11411, doi:10.1029/2007WR006674.

    • Search Google Scholar
    • Export Citation
  • McSweeney, C. F., and R. Jones, 2010: Selecting members of the ‘QUMP’ perturbed-physics ensemble for use with PRECIS. Met Office user guide, Exeter, United Kingdom, 8 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/e/3/SelectingCGMsToDownscale.pdf.]

  • McSweeney, C. F., R. Jones, and B. B. B. Booth, 2012: Selecting ensemble members to provide regional climate change information. J. Climate, 25, 71007121, doi:10.1175/JCLI-D-11-00526.1.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., W. Gutowski, R. Jones, R. Leung, S. McGinnis, A. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311, doi:10.1029/2009EO360002.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 13371362, doi:10.1175/BAMS-D-11-00223.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer, M. Latif, B. McAvaney, and J. F. B. Mitchell, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772, doi:10.1038/nature02771.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., B. B. B. Booth, M. Collins, G. R. Harris, D. M. H. Sexton, and M. J. Webb, 2007: A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Philos. Trans. Roy. Soc., A365, 19932028, doi:10.1098/rsta.2007.2077.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., and Coauthors, 2009: UK climate projections science report: Climate change projections. Met Office, Exeter, United Kingdom, 193 pp. [Available online at http://ukclimateprojections.metoffice.gov.uk/22544.]

  • Nakicenovic, N., and R. Swart, Eds., 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • New, M., A. Lopez, S. Dessai, and R. Wilby, 2007: Challenges in using probabilistic climate change information for impact assessments: An example from the water sector. Philos. Trans. Roy. Soc., A365, 21172131, doi:10.1098/rsta.2007.2080.

    • Search Google Scholar
    • Export Citation
  • NLWIS, cited 2007: Daily 10 km gridded climate dataset: 1961–2003 version 1.0. National Land and Water Information Service, Agriculture and Agri-Food Canada. [Available online at http://www.lib.uwaterloo.ca/locations/umd/digital/documents/ClimateDatasetDaily10kmGrids.html.]

  • Ontario Ministry of Energy, cited 2010: Ontario’s energy system meets demand of a hot summer: McGuinty government investments create a stronger, cleaner electricity system. Ontario Ministry of Energy. [Available online at http://news.ontario.ca/mei/en/2010/09/ontarios-energy-system-meets-demand-of-a-hot-summer.html.]

  • Ontario Ministry of the Environment, 2011a: Climate action: Adapting to change, protecting our future, 2011. Ontario Ministry of the Environment Rep. PIBS 8291, 16 pp. [Available online at http://www.climateontario.ca/doc/workshop/2011LakeSimcoe/Climate%20Action%20Adapting%20to%20Change%20Protecting%20our%20Future.pdf.]

  • Ontario Ministry of the Environment, 2011b: Climate ready: Ontario’s adaptation strategy and action plan, 2011–2014. Ontario Ministry of the Environment Rep. PIBS 8292e, 124 pp. [Available online at http://www.ontario.ca/environment-and-energy/climate-ready-adaptation-strategy-and-action-plan-2011-2014.]

  • Ontario Ministry of the Environment, 2011c: Climate progress: Ontario’s plan for a cleaner, more sustainable future, Annual report 2009–2010. Ontario Ministry of the Environment Rep. PIBS 8290, 56 pp. [Available online at https://ia601901.us.archive.org/17/items/stdprod085413.ome/stdprod085413.pdf.]

  • Räisänen, J., and T. N. Palmer, 2001: A probability and decision-model analysis of a multimodel ensemble of climate change simulations. J. Climate, 14, 32123226, doi:10.1175/1520-0442(2001)014<3212:APADMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. J. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19, 446469, doi:10.1175/JCLI3637.1.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., U. Lall, S. E. Zebiak, and L. Goddard, 2004: Improved combination of multiple atmospheric GCM ensembles for seasonal prediction. Mon. Wea. Rev., 132, 27322744, doi:10.1175/MWR2818.1.

    • Search Google Scholar
    • Export Citation
  • Sexton, D. M. H., J. M. Murphy, M. Collins, and M. J. Webb, 2012: Multivariate probabilistic projections using imperfect climate models part I: Outline of methodology. Climate Dyn., 38, 25132542, doi:10.1007/s00382-011-1208-9.

    • Search Google Scholar
    • Export Citation
  • Stainforth, D. A., and Coauthors, 2005: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433, 403406, doi:10.1038/nature03301.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and J. Kettleborough, 2002: Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature, 416, 723726, doi:10.1038/416723a.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc., A365, 20532075, doi:10.1098/rsta.2007.2076.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and B. Sansó, 2009: Joint projections of temperature and precipitation change from multiple climate models: A hierarchical Bayesian approach. J. Roy. Stat. Soc., 172, 83106, doi:10.1111/j.1467-985X.2008.00545.x.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., R. L. Smith, D. Nychka, and L. O. Mearns, 2005: Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Climate, 18, 15241540, doi:10.1175/JCLI3363.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and Coauthors, 2013: A stepwise cluster analysis approach for downscaled climate projection—A Canadian case study. Environ. Modell. Software, 49, 141151, doi:10.1016/j.envsoft.2013.08.006.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., and P. H. Whetton, 2011: Distributions of decadal means of temperature and precipitation change under global warming. J. Geophys. Res.,116, D07101, doi:10.1029/2010JD014502.

  • Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 1738, doi:10.1007/s00382-006-0111-2.

    • Search Google Scholar
    • Export Citation
  • Webster, M., and Coauthors, 2003: Uncertainty analysis of climate change and policy response. Climatic Change, 61, 295320, doi:10.1023/B:CLIM.0000004564.09961.9f.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., S. P. Charles, E. Zorita, B. Timbal, P. Whetton, and L. O. Mearns, 2004: Guidelines for use of climate scenarios developed from statistical downscaling methods. IPCC, 27 pp. [Available online at http://www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf.]

  • Wilson, S., D. Hassell, D. Hein, C. Morrell, S. Tucker, R. Jones, and R. Taylor, 2011: Installing and using the Hadley Centre regional climate modelling system, PRECIS version 1.9.3. Met Office, Exeter, United Kingdom, 157 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/o/5/tech_man_vn1.9.3.pdf.pdf.]

  • Yokohata, T., M. J. Webb, M. Collins, K. D. Williams, M. Yoshimori, J. C. Hargreaves, and J. D. Annan, 2010: Structural similarities and differences in climate responses to CO2 increase between two perturbed physics ensembles. J. Climate, 23, 13921410, doi:10.1175/2009JCLI2917.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 573 209 25
PDF Downloads 372 132 5