Linking Siberian Snow Cover to Precursors of Stratospheric Variability

Judah Cohen Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by Judah Cohen in
Current site
Google Scholar
PubMed
Close
,
Jason C. Furtado Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by Jason C. Furtado in
Current site
Google Scholar
PubMed
Close
,
Justin Jones Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by Justin Jones in
Current site
Google Scholar
PubMed
Close
,
Mathew Barlow Environmental, Earth, and Atmospheric Sciences, University of Massachusetts Lowell, Lowell, Massachusetts

Search for other papers by Mathew Barlow in
Current site
Google Scholar
PubMed
Close
,
David Whittleston Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by David Whittleston in
Current site
Google Scholar
PubMed
Close
, and
Dara Entekhabi Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Dara Entekhabi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous research has linked wintertime Arctic Oscillation (AO) variability to indices of Siberian snow cover and upward wave activity flux in the preceding fall season. Here, daily data are used to examine the surface and tropospheric processes that occur as the link between snow cover and upward forcing into the stratosphere develops. October Eurasian mean snow cover is found to be significantly related to sea level pressure (SLP) and to lower-stratosphere (100 hPa) meridional heat flux. Analysis of daily SLP and 100-hPa heat flux shows that in years with high October snow, the SLP is significantly higher from approximately 1 November to 15 December, and the 100-hPa heat flux is significantly increased with a two-week lag, from approximately 15 November to 31 December. During November–December, there are periods with upward wave activity flux extending coherently from the surface to the stratosphere, and these events occur nearly twice as often in high snow years compared to low snow years. The vertical structure of these events is a westward-tilting pattern of high eddy heights, with the largest normalized anomalies near the surface in the same region as the snow and SLP changes. These results suggest that high SLP develops in response to the snow cover and this higher pressure, in turn, provides part of the structure of a surface-to-stratosphere wave activity flux event, thus making full events more likely. Implications for improved winter forecasts exist through recognition of these precursor signals.

Corresponding author address: Judah Cohen, Atmospheric and Environmental Research, 131 Hartwell Ave., Lexington, MA 02421. E-mail: jcohen@aer.com

Abstract

Previous research has linked wintertime Arctic Oscillation (AO) variability to indices of Siberian snow cover and upward wave activity flux in the preceding fall season. Here, daily data are used to examine the surface and tropospheric processes that occur as the link between snow cover and upward forcing into the stratosphere develops. October Eurasian mean snow cover is found to be significantly related to sea level pressure (SLP) and to lower-stratosphere (100 hPa) meridional heat flux. Analysis of daily SLP and 100-hPa heat flux shows that in years with high October snow, the SLP is significantly higher from approximately 1 November to 15 December, and the 100-hPa heat flux is significantly increased with a two-week lag, from approximately 15 November to 31 December. During November–December, there are periods with upward wave activity flux extending coherently from the surface to the stratosphere, and these events occur nearly twice as often in high snow years compared to low snow years. The vertical structure of these events is a westward-tilting pattern of high eddy heights, with the largest normalized anomalies near the surface in the same region as the snow and SLP changes. These results suggest that high SLP develops in response to the snow cover and this higher pressure, in turn, provides part of the structure of a surface-to-stratosphere wave activity flux event, thus making full events more likely. Implications for improved winter forecasts exist through recognition of these precursor signals.

Corresponding author address: Judah Cohen, Atmospheric and Environmental Research, 131 Hartwell Ave., Lexington, MA 02421. E-mail: jcohen@aer.com
Save
  • Allen, R. J., and C. S. Zender, 2011: Forcing of the Arctic Oscillation by Eurasian snow cover. J. Climate, 24, 6528–6539, doi:10.1175/2011JCLI4157.1.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 937–30 946, doi:10.1029/1999JD900445.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83–109, doi:10.1029/JZ066i001p00083.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2003: Evidence for nonlinear climate change: Two stratospheric regimes and a regime shift. J. Climate, 16, 3681–3689, doi:10.1175/1520-0442(2003)016<3681:EFNCCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Christiansen, B., 2005: Downward propagation and statistical forecast of the near-surface weather. J. Geophys. Res., 110, D14104, doi:10.1029/2004JD005431.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and D. Entekhabi, 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett., 26, 345–348, doi:10.1029/1998GL900321.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and C. Fletcher, 2007: Improved skill for Northern Hemisphere winter surface temperature predictions based on land–atmosphere fall anomalies. J. Climate, 20, 4118–4132, doi:10.1175/JCLI4241.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and J. Jones, 2011a: A new index for more accurate winter predictions. Geophys. Res. Lett., 38, L21701, doi:10.1029/2011GL049626.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and J. Jones, 2011b: Tropospheric precursors and stratospheric warmings. J. Climate, 24, 6562–6572, doi:10.1175/2011JCLI4160.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., A. Frei, and R. Rosen, 2005: Evaluation of the role of boundary conditions in AMIP-2 simulations of the NAO. J. Climate, 18, 973–981, doi:10.1175/JCLI-3305.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., M. Barlow, P. Kushner, and K. Saito, 2007: Stratosphere–troposphere coupling and links with Eurasian land surface variability. J. Climate, 20, 5335–5343, doi:10.1175/2007JCLI1725.1.

    • Search Google Scholar
    • Export Citation
  • Delsole, T., and J. Shukla, 2006: Specification of wintertime North American surface temperature. J. Climate, 19, 2691–2716, doi:10.1175/JCLI3704.1.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geophys. Publ., 22, 1–23.

  • Feldstein, S. B., 2002: The recent trend and variance increase of the annular mode. J. Climate, 15, 88–94, doi:10.1175/1520-0442(2002)015<0088:TRTAVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fletcher, C., S. C. Hardiman, P. J. Kushner, and J. Cohen, 2009: The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J. Climate, 22, 1208–1222, doi:10.1175/2008JCLI2505.1.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., A. A. Scaife, J. Lindesay, and D. B. Stephenson, 2012: How potentially predictable is northern European winter climate a season ahead? Int. J. Climatol., 32, 801–818, doi:10.1002/joc.2314.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 3282–3299, doi:10.1175/2010JCLI3010.1.

    • Search Google Scholar
    • Export Citation
  • Gong, G., D. Entekhabi, and J. Cohen, 2003: Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. J. Climate, 16, 3917–3931, doi:10.1175/1520-0442(2003)016<3917:MNHWCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., P. J. Kushner, and J. Cohen, 2008: Investigating the ability of general circulation models to capture the effects of Eurasian snow cover on winter climate. J. Geophys. Res., 113, D21123, doi:10.1029/2008JD010623.

    • Search Google Scholar
    • Export Citation
  • Honda, M., J. Inue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., 2013: The potential for skill across the range of the seamless weather-climate prediction problem: A stimulus for our science. Quart. J. Roy. Meteor. Soc., 139, 573–584, doi:10.1002/qj.1991.

    • Search Google Scholar
    • Export Citation
  • Ineson, S., and A. A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 32–36, doi:10.1038/ngeo381.

    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., A. J. Charlton, and A. A. Scaife, 2006: On the influence of stratospheric water vapor changes on the tropospheric circulation. Geophys. Res. Lett., 33, L09806, doi:10.1029/2006GL025983.

    • Search Google Scholar
    • Export Citation
  • Keeley, S. P. E., R. T. Sutton, and L. C. Shaffrey, 2009: Does the North Atlantic Oscillation show unusual persistence on intraseasonal timescales? Geophys. Res. Lett., 36, L22706, doi:10.1029/2009GL040367.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Climate Dyn., 39, 2957–2973, doi:10.1007/s00382-012-1364-6.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., and A. J. Charlton-Perez, 2011: Observed and simulated precursors of stratospheric polar vortex anomalies in the Northern Hemisphere. Climate Dyn., 37, 1443–1456, doi:10.1007/s00382-010-0919-7.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., T. Breiteig, and A. A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 136, 886–893, doi:10.1002/qj.620.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., B. Jha, Q. Zhang, and L. Bounoua, 2007: A new methodology for estimating the unpredictable component of seasonal atmospheric variability. J. Climate, 20, 3888–3901, doi:10.1175/JCLI4216.1.

    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, and Y. Y. Hu, 2004: Recent Arctic sea ice variability: Connections to the Arctic Oscillation and the ENSO. Geophys. Res. Lett., 31, L09211, doi:10.1029/2004GL019858.

    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci.,109, 4074–4079, doi:10.1073/pnas.1114910109.

  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50 day tropical oscillation: A review. Mon. Wea. Rev., 122, 814–837, doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., A. A. Scaife, and S. Ineson, 2009: Enhanced seasonal prediction of European winter warming following volcanic eruptions. J. Climate, 22, 6168–6180, doi:10.1175/2009JCLI3145.1.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871–883, doi:10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pascoe, C. L., L. J. Gray, and A. A. Scaife, 2006: A GCM study of the influence of equatorial winds on the timing of sudden stratospheric warmings. Geophys. Res. Lett., 33, L06825, doi:10.1029/2005GL024715.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., D. Saint-Martin, and H. Douville, 2012: A numerical sensitivity study of the influence of Siberian snow on the northern annular mode. J. Climate, 25, 592–607, doi:10.1175/JCLI-D-11-00038.1.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., E. Brun, V. Mauvais, and H. Douville, 2013: How stationary is the relationship between Siberian snow and Arctic Oscillation over the 20th century? Geophys. Res. Lett., 40, 183–188, doi:10.1029/2012GL054083.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217–229, doi:10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 3548–3554, doi:10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Quan, X., M. Hoerling, J. Whitaker, G. Bates, and T. Xu, 2006: Diagnosing sources of U.S. seasonal forecast skill. J. Climate, 19, 3279–3293, doi:10.1175/JCLI3789.1.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., A. H. Butler, J. C. Furtado, J. L. Cohen, and A. Kumar, 2013: CFSv2 ensemble prediction of the wintertime Arctic Oscillation. Climate Dyn., 41, 1099–1116, doi:10.1007/s00382-013-1850-5.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 3624–364, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., F. Dewey, and R. Heim Jr., 1993: Northern Hemispheric snow cover: An update. Bull. Amer. Meteor. Soc., 74, 1689–1696, doi:10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 3483–3517, doi:10.1175/JCLI3812.1.

  • Smith, K. L., and P. J. Kushner, 2012: Linear interference and the initiation of extratropical stratosphere–troposphere interactions. J. Geophys. Res., 117, D13107, doi:10.1029/2012JD017587.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., P. J. Kushner, and J. Cohen, 2011: The role of linear interference in northern annular mode variability associated with Eurasian snow cover extent. J. Climate, 24, 6185–6202, doi:10.1175/JCLI-D-11-00055.1.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., K. Hamilton, R. J. Stouffer, A. Robock, V. Ramaswamy, B. Santer, and H.-F. Graf, 2006: Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res., 111, D07107, doi:10.1029/2005JD006286.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, doi:10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 85–89, doi:10.1126/science.1058958.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1053 320 19
PDF Downloads 713 191 13