Aquaplanet Experiments Using CAM’s Variable-Resolution Dynamical Core

Colin M. Zarzycki Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Colin M. Zarzycki in
Current site
Google Scholar
PubMed
Close
,
Michael N. Levy National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Michael N. Levy in
Current site
Google Scholar
PubMed
Close
,
Christiane Jablonowski University of Michigan, Ann Arbor, Michigan

Search for other papers by Christiane Jablonowski in
Current site
Google Scholar
PubMed
Close
,
James R. Overfelt Sandia National Laboratories, Albuquerque, New Mexico

Search for other papers by James R. Overfelt in
Current site
Google Scholar
PubMed
Close
,
Mark A. Taylor Sandia National Laboratories, Albuquerque, New Mexico

Search for other papers by Mark A. Taylor in
Current site
Google Scholar
PubMed
Close
, and
Paul A. Ullrich University of California, Davis, Davis, California

Search for other papers by Paul A. Ullrich in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A variable-resolution option has been added within the spectral element (SE) dynamical core of the U.S. Department of Energy (DOE)–NCAR Community Atmosphere Model (CAM). CAM-SE allows for static refinement via conforming quadrilateral meshes on the cubed sphere. This paper investigates the effect of mesh refinement in a climate model by running variable-resolution (var-res) simulations on an aquaplanet. The variable-resolution grid is a 2° (~222 km) grid with a refined patch of 0.25° (~28 km) resolution centered at the equator. Climatology statistics from these simulations are compared to globally uniform runs of 2° and 0.25°.

A significant resolution dependence exists when using the CAM version 4 (CAM4) subgrid physical parameterization package across scales. Global cloud fraction decreases and equatorial precipitation increases with finer horizontal resolution, resulting in drastically different climates between the uniform grid runs and a physics-induced grid imprinting in the var-res simulation. Using CAM version 5 (CAM5) physics significantly improves cloud scaling at different grid resolutions. Additional precipitation at the equator in the high-resolution mesh results in collocated zonally anomalous divergence in both var-res simulations, although this feature is much weaker in CAM5 than CAM4. The equilibrium solution at each grid spacing within the var-res simulations captures the majority of the resolution signal of the corresponding globally uniform grids. The var-res simulation exhibits good performance with respect to wave propagation, including equatorial regions where waves pass through grid transitions. In addition, the increased frequency of high-precipitation events in the refined 0.25° area within the var-res simulations matches that observed in the global 0.25° simulations.

Corresponding author address: Colin M. Zarzycki, University of Michigan, Department of Atmospheric, Oceanic, and Space Sciences, 2455 Hayward St., Ann Arbor, MI 48109. E-mail: zarzycki@umich.edu

Abstract

A variable-resolution option has been added within the spectral element (SE) dynamical core of the U.S. Department of Energy (DOE)–NCAR Community Atmosphere Model (CAM). CAM-SE allows for static refinement via conforming quadrilateral meshes on the cubed sphere. This paper investigates the effect of mesh refinement in a climate model by running variable-resolution (var-res) simulations on an aquaplanet. The variable-resolution grid is a 2° (~222 km) grid with a refined patch of 0.25° (~28 km) resolution centered at the equator. Climatology statistics from these simulations are compared to globally uniform runs of 2° and 0.25°.

A significant resolution dependence exists when using the CAM version 4 (CAM4) subgrid physical parameterization package across scales. Global cloud fraction decreases and equatorial precipitation increases with finer horizontal resolution, resulting in drastically different climates between the uniform grid runs and a physics-induced grid imprinting in the var-res simulation. Using CAM version 5 (CAM5) physics significantly improves cloud scaling at different grid resolutions. Additional precipitation at the equator in the high-resolution mesh results in collocated zonally anomalous divergence in both var-res simulations, although this feature is much weaker in CAM5 than CAM4. The equilibrium solution at each grid spacing within the var-res simulations captures the majority of the resolution signal of the corresponding globally uniform grids. The var-res simulation exhibits good performance with respect to wave propagation, including equatorial regions where waves pass through grid transitions. In addition, the increased frequency of high-precipitation events in the refined 0.25° area within the var-res simulations matches that observed in the global 0.25° simulations.

Corresponding author address: Colin M. Zarzycki, University of Michigan, Department of Atmospheric, Oceanic, and Space Sciences, 2455 Hayward St., Ann Arbor, MI 48109. E-mail: zarzycki@umich.edu
Save
  • Abdul-Razzak, H., and S. J. Ghan, 2000: A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res., 105, 68376844, doi:10.1029/1999JD901161.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. D., S. E. Benzley, and S. J. Owen, 2009: Automatic all quadrilateral mesh adaption through refinement and coarsening. Proc. 18th Int. Meshing Roundtable, Salt Lake City, UT, Sandia National Laboratories, 557574.

  • Bacmeister, J. T., M. F. Wehner, R. B. Neale, A. Gettelman, C. Hannay, P. H. Lauritzen, J. M. Caron, and J. E. Truesdale, 2014: Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J. Climate, 27, 30733099, doi:10.1175/JCLI-D-13-00387.1.

    • Search Google Scholar
    • Export Citation
  • Blackburn, M., and B. J. Hoskins, 2013: Context and aims of the Aqua-Planet Experiment. J. Meteor. Soc. Japan, 91, 115, doi:10.2151/jmsj.2013-A01.

    • Search Google Scholar
    • Export Citation
  • Blackburn, M., and Coauthors, 2013: The Aqua-Planet Experiment (APE): Control SST simulation. J. Meteor. Soc. Japan, 91, 1756, doi:10.2151/jmsj.2013-A02.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., 1991: Sensitivity of simulated climate to model resolution. J. Climate, 4, 469485, doi:10.1175/1520-0442(1991)004<0469:SOSCTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, doi:10.1175/2008JCLI2556.1.

    • Search Google Scholar
    • Export Citation
  • Chen, C.-T., and T. Knutson, 2008: On the verification and comparison of extreme rainfall indices from climate models. J. Climate, 21, 16051621, doi:10.1175/2007JCLI1494.1.

    • Search Google Scholar
    • Export Citation
  • Dennis, J. M., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26, 7489, doi:10.1177/1094342011428142.

    • Search Google Scholar
    • Export Citation
  • Evans, K. J., P. H. Lauritzen, S. K. Mishra, R. B. Neale, M. A. Taylor, and J. J. Tribbia, 2013: AMIP simulation with the CAM4 spectral element dynamical core. J. Climate, 26, 689709, doi:10.1175/JCLI-D-11-00448.1.

    • Search Google Scholar
    • Export Citation
  • Fournier, A., M. A. Taylor, and J. J. Tribbia, 2004: The spectral element atmosphere model (SEAM): High-resolution parallel computation and localized resolution of regional dynamics. Mon. Wea. Rev., 132, 726748, doi:10.1175/1520-0493(2004)132<0726:TSEAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, doi:10.1029/2009JD013797.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Guba, O., J. R. Overfelt, M. A. Taylor, M. N. Levy, and P. Ullrich, 2014: The spectral element method on variable resolution grids: Evaluating grid sensitivity and resolution-aware numerical viscosity. Tech. Note 2014-4110J, Sandia National Laboratories, 24 pp.

  • Hack, J. J., 1994: Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM2). J. Geophys. Res., 99, 55515568, doi:10.1029/93JD03478.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., R. Leung, S. A. Rauscher, and T. Ringler, 2013: Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Mon. Wea. Rev., 141, 30223036, doi:10.1175/MWR-D-12-00338.1.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842, doi:10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation, and Predictability.Cambridge University Press, 364 pp.

  • Lackmann, G., 2011: Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting. Amer. Meteor. Soc., 360 pp.

  • Laprise, R., and Coauthors, 2008: Challenging some tenets of regional climate modelling. Meteor. Atmos. Phys., 100, 322, doi:10.1007/s00703-008-0292-9.

    • Search Google Scholar
    • Export Citation
  • Li, F., W. D. Collins, M. F. Wehner, D. L. Williamson, J. G. Olson, and C. Algieri, 2011: Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of Community Atmospheric Model (CAM3). Tellus, 63A, 884892, doi:10.1111/j.1600-0870.2011.00544.x.

    • Search Google Scholar
    • Export Citation
  • Li, F., W. D. Collins, M. F. Wehner, and L. R. Leung, 2013: Hurricanes in an aquaplanet world: Implications of the impacts of external forcing and model horizontal resolution. J. Adv. Model. Earth Syst., 5, 134145, doi:10.1002/jame.20020.

    • Search Google Scholar
    • Export Citation
  • McDonald, A., 2003: Transparent boundary conditions for the shallow-water equations: Testing in a nested environment. Mon. Wea. Rev., 131, 698705, doi:10.1175/1520-0493(2003)131<0698:TBCFTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mishra, S. K., M. A. Taylor, R. D. Nair, P. H. Lauritzen, H. M. Tufo, and J. J. Tribbia, 2011a: Evaluation of the HOMME dynamical core in the aquaplanet configuration of NCAR CAM4: Rainfall. J. Climate, 24, 40374055, doi:10.1175/2011JCLI3860.1.

    • Search Google Scholar
    • Export Citation
  • Mishra, S. K., M. A. Taylor, R. D. Nair, H. M. Tufo, and J. J. Tribbia, 2011b: Performance of the HOMME dynamical core in the aqua-planet configuration of NCAR CAM4: Equatorial waves. Ann. Geophys., 29, 221227, doi:10.5194/angeo-29-221-2011.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, doi:10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parametrizations: I: The proposal. Atmos. Sci. Lett., 1, 101107, doi:10.1006/asle.2000.0022.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+STR, 212 pp.

  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp.

  • O’Brien, T. A., F. Li, W. D. Collins, S. A. Rauscher, T. D. Ringler, M. A. Taylor, S. M. Hagos, and L. R. Leung, 2013: Observed scaling in clouds and precipitation and scale incognizance in regional to global atmospheric models. J. Climate, 26, 93139333, doi:10.1175/JCLI-D-13-00005.1.

    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, doi:10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Rančić, M., R. J. Purser, and F. Mesinger, 1996: A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Quart. J. Roy. Meteor. Soc., 122, 959982, doi:10.1002/qj.49712253209.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., and J. E. Kristjánsson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11, 15871614, doi:10.1175/1520-0442(1998)011<1587:ACOTCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauscher, S. A., T. D. Ringler, W. C. Skamarock, and A. A. Mirin, 2013: Exploring a global multiresolution modeling approach using aquaplanet simulations. J. Climate, 26, 24322452, doi:10.1175/JCLI-D-12-00154.1.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2011: An analytic vortex initialization technique for idealized tropical cyclone studies in AGCMs. Mon. Wea. Rev., 139, 689710, doi:10.1175/2010MWR3488.1.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., and C. Jablonowski, 2012: Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs. J. Adv. Model. Earth Syst.,4, M04001, doi:10.1029/2011MS000099.

  • Ringler, T. D., D. Jacobsen, M. Gunzburger, L. Ju, M. Duda, and W. Skamarock, 2011: Exploring a multiresolution modeling approach within the shallow-water equations. Mon. Wea. Rev., 139, 33483368, doi:10.1175/MWR-D-10-05049.1.

    • Search Google Scholar
    • Export Citation
  • Ronchi, C., R. Iacono, and P. Paolucci, 1996: The “cubed sphere”: A new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys., 124, 93114, doi:10.1006/jcph.1996.0047.

    • Search Google Scholar
    • Export Citation
  • Sadourny, R., 1972: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Wea. Rev., 100, 136144, doi:10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, doi:10.1175/MWR-D-11-00215.1.

    • Search Google Scholar
    • Export Citation
  • St-Cyr, A., C. Jablonowski, J. M. Dennis, H. M. Tufo, and S. J. Thomas, 2008: A comparison of two shallow-water models with nonconforming adaptive grids. Mon. Wea. Rev., 136, 18981922, doi:10.1175/2007MWR2108.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, Y. O., K. Hamilton, and W. Ohfuchi, 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett.,33, L12812, doi:10.1029/2006GL026429.

  • Taylor, M. A., 2011: Conservation of mass and energy for the moist atmospheric primitive equations on unstructured grids. Numerical Techniques for Global Atmospheric Models, P. H. Lauritzen et al., Eds., Lecture Notes in Computational Science and Engineering, Vol. 80, Springer, 357–380, doi:10.1007/978-3-642-11640-7_12.

  • Taylor, M. A., and A. Fournier, 2010: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys., 229, 58795895, doi:10.1016/j.jcp.2010.04.008.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130, 92108, doi:10.1006/jcph.1996.5554.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., J. Edwards, S. Thomas, and R. D. Nair, 2007: A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid. J. Phys.: Conf. Ser.,78, 012074, doi:10.1088/1742-6596/78/1/012074.

  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2008a: Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, version 3. Tellus, 60A, 848862, doi:10.1111/j.1600-0870.2008.00339.x.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2008b: Equivalent finite volume and Eulerian spectral transform horizontal resolutions established from aqua-planet simulations. Tellus, 60A, 839847, doi:10.1111/j.1600-0870.2008.00340.x.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2013: The effect of time steps and time-scales on parametrization suites. Quart. J. Roy. Meteor. Soc., 139, 548560, doi:10.1002/qj.1992.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211224, doi:10.1016/S0021-9991(05)80016-6.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., C. Jablonowski, and M. A. Taylor, 2014: Using variable-resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon. Wea. Rev., 142, 12211239, doi:10.1175/MWR-D-13-00179.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, doi:10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 854 319 11
PDF Downloads 510 131 3