Relation of the South China Sea Precipitation Variability to Tropical Indo-Pacific SST Anomalies during Spring-to-Summer Transition

Wenting Hu State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Wenting Hu in
Current site
Google Scholar
PubMed
Close
,
Renguang Wu Institute of Space and Earth Information Science, and Department of Geography and Resource Management, and Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China

Search for other papers by Renguang Wu in
Current site
Google Scholar
PubMed
Close
, and
Yong Liu Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yong Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study investigates the relationship of South China Sea (SCS) precipitation to tropical Indo-Pacific sea surface temperature (SST) during April–June (AMJ), which is the transition season from spring to summer. It is revealed that SCS rainfall anomalies in AMJ are influenced by SST anomalies in the equatorial Pacific (EP), tropical Indian Ocean (TIO), and western North Pacific (WNP). Three types of SST-influenced cases are obtained based on different combinations of SST anomalies in the above three regions. When same-sign EP and TIO SST anomalies are accompanied by opposite WNP SST anomalies, both anomalous cross-equatorial flows from the southwestern TIO induced by negative SST anomalies there and an anomalous Walker circulation forced by negative EP SST anomalies contribute to enhanced convection over the SCS and the surrounding regions with additional contribution from positive WNP SST anomalies via a Rossby wave–type response. In the cases of combined effects of EP and WNP SST anomalies, above-normal SST in the WNP is a direct cause of above-normal SCS rainfall though the WNP SST anomalies are induced by EP SST forcing. In the cases of combined impacts of TIO and EP SST anomalies, the accompanying coastal Sumatra SST anomalies contribute to the SCS rainfall variability via an anomalous cross-equatorial vertical circulation. The negative SST anomalies near the Sumatra coast induce descent over the southeastern TIO and ascent over the SCS and WNP. Model experiments with an atmospheric model confirm the impacts of southern TIO and EP SST anomalies on AMJ rainfall variation over the SCS.

Corresponding author address: Dr. Renguang Wu, Fok Ying Tung Remote Sensing Science Building, Chinese University of Hong Kong, Shatin, NT, Hong Kong, China. E-mail: renguang@cuhk.edu.hk

Abstract

The present study investigates the relationship of South China Sea (SCS) precipitation to tropical Indo-Pacific sea surface temperature (SST) during April–June (AMJ), which is the transition season from spring to summer. It is revealed that SCS rainfall anomalies in AMJ are influenced by SST anomalies in the equatorial Pacific (EP), tropical Indian Ocean (TIO), and western North Pacific (WNP). Three types of SST-influenced cases are obtained based on different combinations of SST anomalies in the above three regions. When same-sign EP and TIO SST anomalies are accompanied by opposite WNP SST anomalies, both anomalous cross-equatorial flows from the southwestern TIO induced by negative SST anomalies there and an anomalous Walker circulation forced by negative EP SST anomalies contribute to enhanced convection over the SCS and the surrounding regions with additional contribution from positive WNP SST anomalies via a Rossby wave–type response. In the cases of combined effects of EP and WNP SST anomalies, above-normal SST in the WNP is a direct cause of above-normal SCS rainfall though the WNP SST anomalies are induced by EP SST forcing. In the cases of combined impacts of TIO and EP SST anomalies, the accompanying coastal Sumatra SST anomalies contribute to the SCS rainfall variability via an anomalous cross-equatorial vertical circulation. The negative SST anomalies near the Sumatra coast induce descent over the southeastern TIO and ascent over the SCS and WNP. Model experiments with an atmospheric model confirm the impacts of southern TIO and EP SST anomalies on AMJ rainfall variation over the SCS.

Corresponding author address: Dr. Renguang Wu, Fok Ying Tung Remote Sensing Science Building, Chinese University of Hong Kong, Shatin, NT, Hong Kong, China. E-mail: renguang@cuhk.edu.hk
Save
  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673, doi:10.1175/JCLI-3223.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • He, Z., and R. Wu, 2014: Indo-Pacific remote forcing in summer rainfall variability over the South China Sea. Climate Dyn.,42, 2323–2337, doi:10.1007/s00382-014-2123-7.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, doi:10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., H. T. Wu, and S. Yang, 1998: Hydrologic processes associated with the first transition of the Asian summer monsoon: A pilot satellite study. Bull. Amer. Meteor. Soc., 79, 18711882, doi:10.1175/1520-0477(1998)079<1871:HPAWTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., X. Li, and M. T. Wu, 2002: Evolution of the large scale circulation, cloud structure and regional water cycle associated with the South China Sea monsoon during May–June, 1998. J. Meteor. Soc. Japan, 80, 11291147, doi:10.2151/jmsj.80.1129.

    • Search Google Scholar
    • Export Citation
  • Lin, S., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mao, J. Y., J. Chan, and G. X. Wu, 2004: Relationship between the onset of the South China Sea summer monsoon and the structure of the Asian subtropical anticyclone. J. Meteor. Soc. Japan, 82, 845849, doi:10.2151/jmsj.2004.845.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • Tomita, T., and T. Yasunari, 1996: Role of the northeast winter monsoon on the biennial oscillation of the ENSO/monsoon system. J. Meteor. Soc. Japan, 74, 399413.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 11951211, doi:10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., W. Wang, D. Wang, and Q. Wang, 2006: Interannual variability of the South China Sea associated with El Niño. J. Geophys. Res., 111, C03023, doi:10.1029/2005JC003333.

    • Search Google Scholar
    • Export Citation
  • Wang, D., Q. Xie, Y. Du, W. Q. Wang, and J. Chen, 2002: The 1997–1998 warm event in the South China Sea. Chin. Sci. Bull., 47, 12211227, doi:10.1007/BF02907614.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability mode over the East Asia. J. Climate, 22, 29923005, doi:10.1175/2008JCLI2710.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010a: Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J. Climate, 23, 48074822, doi:10.1175/2010JCLI3222.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010b: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during El Niño decaying summer. J. Climate, 23, 29742986, doi:10.1175/2010JCLI3300.1.

    • Search Google Scholar
    • Export Citation
  • Wu, G. X., and Y. S. Zhang, 1998: Tibetan Plateau forcing and the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913927, doi:10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, R., 2002: Processes for the northeastward advance of the summer monsoon over the western North Pacific. J. Meteor. Soc. Japan, 80, 6783, doi:10.2151/jmsj.80.67.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2000: Interannual variability of summer monsoon onset over the western North Pacific and the underlying processes. J. Climate, 13, 24832501, doi:10.1175/1520-0442(2000)013<2483:IVOSMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2001: Multi-stage onset of the summer monsoon over the western North Pacific. Climate Dyn., 17, 277289, doi:10.1007/s003820000118.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2007: Regimes of local air-sea interactions and implications for performance of forced simulations. Climate Dyn., 29, 393410, doi:10.1007/s00382-007-0246-9.

    • Search Google Scholar
    • Export Citation
  • Wu, R., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, doi:10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and K. Pegion, 2006: Local air–sea relationship in observations and model simulations. J. Climate, 19, 49144932, doi:10.1175/JCLI3904.1.

    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113, D05104, doi:10.1029/2007JD009316.

    • Search Google Scholar
    • Export Citation
  • Wu, R., S. Yang, Z. P. Wen, G. Huang, and K. Hu, 2012: Interdecadal change in the relationship of southern China summer rainfall with tropical Indo-Pacific SST. Theor. Appl. Climatol., 108, 119133, doi:10.1007/s00704-011-0519-4.

    • Search Google Scholar
    • Export Citation
  • Wu, R., G. Huang, Z. Du, and K. Hu, 2013: Cross-season relation of the South China Sea precipitation variability between winter and summer. Climate Dyn., doi:10.1007/s00382-013-1820-y, in press.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., Q. Xie, D. Wang, and W. T. Liu, 2003: Summer upwelling in the South China Sea and its role in regional climate variations. J. Geophys. Res., 108, 3261, doi:10.1029/2003JC001867.

    • Search Google Scholar
    • Export Citation
  • Yoo, S. H., S. Yang, and C. H. Ho, 2006: Variability of the Indian Ocean sea surface temperature and its impacts on Asian-Australian monsoon climate. J. Geophys. Res., 111, D03108, doi:10.1029/2005JD006001.

    • Search Google Scholar
    • Export Citation
  • Zhou, L. T., C. Y. Tam, W. Zhou, and J. C. L. Chan, 2010: Influence of South China Sea SST and ENSO on winter rainfall over south China. Adv. Atmos. Sci., 27, 832844, doi:10.1007/s00376-009-9102-7.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 495 109 7
PDF Downloads 283 81 1