Oceanic Forcing of Antarctic Climate Change: A Study Using a Stretched-Grid Atmospheric General Circulation Model

Gerhard Krinner LGGE (CNRS and Université de Grenoble Alpes), Grenoble, France

Search for other papers by Gerhard Krinner in
Current site
Google Scholar
PubMed
Close
,
Chloé Largeron LGGE (CNRS and Université de Grenoble Alpes), Grenoble, France

Search for other papers by Chloé Largeron in
Current site
Google Scholar
PubMed
Close
,
Martin Ménégoz LGGE (CNRS and Université de Grenoble Alpes), Grenoble, France

Search for other papers by Martin Ménégoz in
Current site
Google Scholar
PubMed
Close
,
Cécile Agosta LGGE (CNRS and Université de Grenoble Alpes), Grenoble, France, and Department of Geography, University of Liège, Liège, Belgium

Search for other papers by Cécile Agosta in
Current site
Google Scholar
PubMed
Close
, and
Claire Brutel-Vuilmet LGGE (CNRS and Université de Grenoble Alpes), Grenoble, France

Search for other papers by Claire Brutel-Vuilmet in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A variable-resolution atmospheric general circulation model (AGCM) is used for climate change projections over the Antarctic. The present-day simulation uses prescribed observed sea surface conditions, while a set of five simulations for the end of the twenty-first century (2070–99) under the Special Report on Emissions Scenarios (SRES) A1B scenario uses sea surface condition anomalies from selected coupled ocean–atmosphere climate models from phase 3 of the Coupled Model Intercomparison Project (CMIP3). Analysis of the results shows that the prescribed sea surface condition anomalies have a very strong influence on the simulated climate change on the Antarctic continent, largely dominating the direct effect of the prescribed greenhouse gas concentration changes in the AGCM simulations. Complementary simulations with idealized forcings confirm these results. An analysis of circulation changes using self-organizing maps shows that the simulated climate change on regional scales is not principally caused by shifts of the frequencies of the dominant circulation patterns, except for precipitation changes in some coastal regions. The study illustrates that in some respects the use of bias-corrected sea surface boundary conditions in climate projections with a variable-resolution atmospheric general circulation model has some distinct advantages over the use of limited-area atmospheric circulation models directly forced by generally biased coupled climate model output.

Corresponding author address: Gerhard Krinner, LGGE/CNRS, 54 rue Molière, BP 96, 38402 Saint Martin d’Hères CEDEX, France. E-mail: krinner@lgge.obs.ujf-grenoble.fr

Abstract

A variable-resolution atmospheric general circulation model (AGCM) is used for climate change projections over the Antarctic. The present-day simulation uses prescribed observed sea surface conditions, while a set of five simulations for the end of the twenty-first century (2070–99) under the Special Report on Emissions Scenarios (SRES) A1B scenario uses sea surface condition anomalies from selected coupled ocean–atmosphere climate models from phase 3 of the Coupled Model Intercomparison Project (CMIP3). Analysis of the results shows that the prescribed sea surface condition anomalies have a very strong influence on the simulated climate change on the Antarctic continent, largely dominating the direct effect of the prescribed greenhouse gas concentration changes in the AGCM simulations. Complementary simulations with idealized forcings confirm these results. An analysis of circulation changes using self-organizing maps shows that the simulated climate change on regional scales is not principally caused by shifts of the frequencies of the dominant circulation patterns, except for precipitation changes in some coastal regions. The study illustrates that in some respects the use of bias-corrected sea surface boundary conditions in climate projections with a variable-resolution atmospheric general circulation model has some distinct advantages over the use of limited-area atmospheric circulation models directly forced by generally biased coupled climate model output.

Corresponding author address: Gerhard Krinner, LGGE/CNRS, 54 rue Molière, BP 96, 38402 Saint Martin d’Hères CEDEX, France. E-mail: krinner@lgge.obs.ujf-grenoble.fr
Save
  • Agosta, C., V. Favier, G. Krinner, H. Gallée, and C. Genthon, 2013: High resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries. Climate Dyn., 41, 32473260, doi:10.1007/s00382-013-1903-9.

    • Search Google Scholar
    • Export Citation
  • Ashfaq, M., C. B. Skinner, and N. S. Diffenbaugh, 2011: Influence of SST biases on future climate change projections. Climate Dyn., 36, 13031319, doi:10.1007/s00382-010-0875-2.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., S. Koumoutsaris, and K. Hodges, 2011: Large-scale surface mass balance of ice sheets from a comprehensive atmospheric model. Surv. Geophys., 32, 459474, doi:10.1007/s10712-011-9120-8.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., W. M. Connolley, and J. Turner, 2008: Antarctic climate change over the twenty first century. J. Geophys. Res., 113, D03103, doi:10.1029/2007JD008933.

    • Search Google Scholar
    • Export Citation
  • Cassano, J. C., P. Uotila, and A. Lynch, 2006: Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, part 1: Arctic. Int. J. Climatol., 26, 10271049, doi:10.1002/joc.1306.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and Coauthors, 2013: Sea level change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1137–1216.

    • Search Google Scholar
    • Export Citation
  • Connolley, W. M., 1997: Variability in annual mean circulation in southern high latitudes. Climate Dyn., 13, 745756, doi:10.1007/s003820050195.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., P. Marquet, and R. G. Jones, 1998: Simulation of climate change over Europe using a global variable resolution general circulation model. Climate Dyn., 14, 173189, doi:10.1007/s003820050216.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, doi:10.1175/2009JCLI3053.1.

    • Search Google Scholar
    • Export Citation
  • Di Luca, A., R. de Elia, and R. Laprise, 2013: Potential for small scale added value of RCM’s downscaled climate change signal. Climate Dyn., 40, 601618, doi:10.1007/s00382-012-1415-z.

    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL023272.

    • Search Google Scholar
    • Export Citation
  • Fettweis, X., B. Franco, M. Tedesco, J. H. van Angelen, J. T. M. Lenaerts, M. R. van de Broeke, and H. Gallée, 2012: Estimating Greenland Ice Sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere Discuss., 6, 31013147, doi:10.5194/tcd-6-3101-2012.

    • Search Google Scholar
    • Export Citation
  • Fox-Rabinovitz, M., J. Côté, B. Dugas, M. Déqué, and J. L. McGregor, 2006: Variable resolution general circulation models: Stretched-Grid Model Intercomparison Project (SGMIP). J. Geophys. Res., 111, D16104, doi:10.1029/2005JD006520.

    • Search Google Scholar
    • Export Citation
  • Fox-Rabinovitz, M., J. Côté, B. Dugas, M. Déqué, J. L. McGregor, and A. Belochitski, 2008: Stretched-Grid Model Intercomparison Project: Decadal regional climate simulations with enhanced variable and uniform-resolution GCMs. Meteor. Atmos. Phys.,100, 159–178, doi:10.1007/s00703-008-0301-z.

  • Genthon, C., G. Krinner, and H. Castebrunet, 2009: Antarctic precipitation and climate-change predictions: Horizontal resolution and margin vs. plateau issues. Ann. Glaciol., 50, 5560, doi:10.3189/172756409787769681.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and P. Huybrechts, 2006: Ice-sheet contributions to future sea-level change. Philos. Trans. Roy. Soc., 364A, 17091731, doi:10.1098/rsta.2006.1796.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27, 787813, doi:10.1007/s00382-006-0158-0.

    • Search Google Scholar
    • Export Citation
  • Kohonen, T., 2001: Self-Organizing Maps. Springer Series in Information Sciences, Vol. 30, Springer, 501 pp.

  • Krinner, G., C. Genthon, Z.-X. Li, and P. Le Van, 1997: Studies of the Antarctic climate with a stretched-grid general circulation model. J. Geophys. Res., 102, 13 73113 745, doi:10.1029/96JD03356.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., O. Magand, I. Simmonds, C. Genthon, and J.-L. Dufresne, 2007: Simulated Antarctic precipitation and surface mass balance at the end of the 20th and 21st centuries. Climate Dyn., 28, 215230, doi:10.1007/s00382-006-0177-x.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., B. Guicherd, K. Ox, C. Genthon, and O. Magand, 2008: Influence of oceanic boundary conditions in simulations of Antarctic climate and surface mass balance change during the coming century. J. Climate, 21, 938962, doi:10.1175/2007JCLI1690.1.

    • Search Google Scholar
    • Export Citation
  • Ligtenberg, S. R. M., W. J. van de Berg, M. R. van den Broeke, J. G. L. Rae, and E. van Meijgaard, 2013: Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Climate Dyn., 41, 867884, doi:10.1007/s00382-013-1749-1.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and Coauthors, 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp. [Available online at http://www.grida.no/climate/ipcc/emission/.]

  • Racherla, P. N., D. T. Shindell, and G. S. Faluvegi, 2012: The added value to global model projections of climate change by dynamical downscaling: A case study over the continental U.S. using the GISS-ModelE2 and WRF models. J. Geophys. Res., 117, D20118, doi:10.1029/2012JD018091.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Salas-Mélia, D., F. Chauvin, M. Déqué, H. Douville, J. F. Gueremy, P. Marquet, S. Planton, J. F. Royer, and S. Tyteca, 2005: Description and validation of the CNRM-CM3 global coupled model. CNRM working note 103, 36 pp. [Available online at http://www.cnrm.meteo.fr/scenario2004/references_eng.html.]

  • Shindell, D. T., and G. A. Schmidt, 2004: Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys. Res. Lett., 31, L18209, doi:10.1029/2004GL020724.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., S. Manabe, and K. Bryan, 1989: Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2. Nature, 342, 660662, doi:10.1038/342660a0.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/experiment_design.html.]

  • Uotila, P., A. H. Lynch, J. J. Cassano, and R. I. Cullather, 2007: Changes in Antarctic net precipitation in the 21st century based on Intergovernmental Panel on Climate Change (IPCC) model scenarios. J. Geophys. Res., 112, D10107, doi:10.1029/2006JD007482.

    • Search Google Scholar
    • Export Citation
  • Vizcaino, M., U. Mikolajewicz, M. Groger, E. Maier-Reimer, G. Schurgers, and A. Winguth, 2008: Long-term ice sheet–climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model. Climate Dyn., 31, 665690, doi:10.1007/s00382-008-0369-7.

    • Search Google Scholar
    • Export Citation
  • Vizcaino, M., U. Mikolajewicz, J. Jungclaus, and G. Schurgers, 2010: Climate modification by future ice sheet changes and consequences for ice sheet mass balance. Climate Dyn., 34, 301324, doi:10.1007/s00382-009-0591-y.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 476 220 5
PDF Downloads 225 62 6