Development of a High-Resolution Gridded Daily Meteorological Dataset over Sub-Saharan Africa: Spatial Analysis of Trends in Climate Extremes

Nathaniel W. Chaney Princeton University, Princeton, New Jersey

Search for other papers by Nathaniel W. Chaney in
Current site
Google Scholar
PubMed
Close
,
Justin Sheffield Princeton University, Princeton, New Jersey

Search for other papers by Justin Sheffield in
Current site
Google Scholar
PubMed
Close
,
Gabriele Villarini Iowa Institute of Hydraulic Research—Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Gabriele Villarini in
Current site
Google Scholar
PubMed
Close
, and
Eric F. Wood Princeton University, Princeton, New Jersey

Search for other papers by Eric F. Wood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Assessing changes in the frequency and intensity of extreme meteorological events and their impact on water resources, agriculture, and infrastructure is necessary to adequately prepare and adapt to future change. This is a challenge in data-sparse regions such as sub-Saharan Africa, where a lack of high-density and temporally consistent long-term in situ measurements complicates the analysis. To address this, a temporally homogenous and high-temporal- and high-spatial-resolution meteorological dataset is developed over sub-Saharan Africa (5°S–25°N), covering the time period between 1979 and 2005. It is developed by spatially downscaling the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis to a 0.1° spatial resolution, detecting and correcting for temporal inhomogeneities, and by removing random errors and biases by assimilating quality-controlled and gap-filled Global Summary of the Day (GSOD) in situ measurements. The dataset is then used to determine the statistical significance and magnitude of changes in climate extremes between 1979 and 2005. The results suggest a shift in the distribution of daily maximum and minimum temperatures toward a warmer mean with a faster increase in warm than cold events. Changes in the mean annual precipitation and heavy rainfall events are significant only in regions affected by the Sahel droughts of the 1970s and 1980s.

Corresponding author address: Nathaniel W. Chaney, Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544. E-mail: nchaney@princeton.edu

Abstract

Assessing changes in the frequency and intensity of extreme meteorological events and their impact on water resources, agriculture, and infrastructure is necessary to adequately prepare and adapt to future change. This is a challenge in data-sparse regions such as sub-Saharan Africa, where a lack of high-density and temporally consistent long-term in situ measurements complicates the analysis. To address this, a temporally homogenous and high-temporal- and high-spatial-resolution meteorological dataset is developed over sub-Saharan Africa (5°S–25°N), covering the time period between 1979 and 2005. It is developed by spatially downscaling the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis to a 0.1° spatial resolution, detecting and correcting for temporal inhomogeneities, and by removing random errors and biases by assimilating quality-controlled and gap-filled Global Summary of the Day (GSOD) in situ measurements. The dataset is then used to determine the statistical significance and magnitude of changes in climate extremes between 1979 and 2005. The results suggest a shift in the distribution of daily maximum and minimum temperatures toward a warmer mean with a faster increase in warm than cold events. Changes in the mean annual precipitation and heavy rainfall events are significant only in regions affected by the Sahel droughts of the 1970s and 1980s.

Corresponding author address: Nathaniel W. Chaney, Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544. E-mail: nchaney@princeton.edu
Save
  • Adler, R. F., and Coauthors, 2003: The Version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aguilar, E., and Coauthors, 2009: Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. J. Geophys. Res., 114, D02115, doi:10.1029/2008JD011010.

    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi:10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., A. J. Negri, and R. F. Adler, 1999: Statistical adjustment of satellite microwave monthly rainfall estimates over Amazonia. J. Appl. Meteor., 38, 15901598, doi:10.1175/1520-0450(1999)038<1590:SAOSMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Athar, H., 2014: Trends in observed extreme climate indices in Saudi Arabia during 1979–2008. Int. J. Climatol.,34, 1561–1574, doi:10.1002/joc.3783.

  • Atlas, D., D. Rosenfeld, and D. B. Wolfd, 1990: Climatologically tuned reflectivity-rain rate relations and links to area-time integrals. J. Appl. Meteor., 29, 11201135, doi:10.1175/1520-0450(1990)029<1120:CTRRRR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, doi:10.1038/nature04141.

    • Search Google Scholar
    • Export Citation
  • Beek, E. G., A. Stein, and L. L. F. Janssen, 1992: Spatial variability and interpolation of daily precipitation amount. Stochastic Hydrol. Hydraul., 6, 304320, doi:10.1007/BF01581623.

    • Search Google Scholar
    • Export Citation
  • Busuioc, A., and H. von Storch, 1996: Changes in the winter precipitation in Romania and its relation to the large-scale circulation. Tellus,48, 538–552, doi:10.1034/j.1600-0870.1996.t01-3-00004.x.

  • Chiles, J.-P., and P. Delfiner, 1999: Geostatistics: Modeling Spatial Uncertainty.Wiley, 695 pp.

  • Chirlin, G. R., and E. F. Wood, 1982: On the relationship between kriging and state estimation. Water Resour. Res., 18, 432438, doi:10.1029/WR018i002p00432.

    • Search Google Scholar
    • Export Citation
  • Demaria, E. M. C., E. P. Maurer, J. Sheffield, E. Bustos, D. Poblete, S. Vicuña, and F. Meza, 2013: Using a gridded global dataset to characterize regional hydroclimate in central Chile. J. Hydrometeor., 14, 251265, doi:10.1175/JHM-D-12-047.1.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and L. V. Alexander, 2012: The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett., 39, L14707, doi:10.1029/2012GL052459.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., L. V. Alexander, L. Yang, I. Durre, R. Vose, and J. Caesar, 2013a: Global land-based datasets for monitoring climatic extremes. Bull. Amer. Meteor. Soc., 94, 9971006, doi:10.1175/BAMS-D-12-00109.1.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and Coauthors, 2013b: Changes in extreme temperature and precipitation in the Arab region: Long-term trends and variability related to ENSO and NAO. Int. J. Climatol., 34, 581–592, doi:10.1002/joc.3707.

    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and Coauthors, 2013c: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res., 118, 20982118, doi:10.1002/jgrd.50150.

    • Search Google Scholar
    • Export Citation
  • Dunn, R. J. H., K. M. Willett, P. W. Thorne, E. V. Woolley, I. Durre, A. Dai, D. E. Parker, and R. S. Vose, 2012: HadISD: A quality-controlled global synoptic report database for selected variables at long-term stations from 1973–2011. Climate Past, 8, 16491679, doi:10.5194/cp-8-1649-2012.

    • Search Google Scholar
    • Export Citation
  • Durre, I., M. J. Menne, B. E. Gleason, T. G. Houston, and R. S. Vose, 2010: Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteor. Climatol., 49, 1615–1633, doi:10.1175/2010JAMC2375.1.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and G. Villarini, 2012: Detecting inhomogeneities in the Twentieth Century Reanalysis over the central United States. J. Geophys. Res., 117, D05123, doi:10.1029/2011JD016988.

    • Search Google Scholar
    • Export Citation
  • Frich, P., L. V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. M. G. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193212, doi:10.3354/cr019193.

    • Search Google Scholar
    • Export Citation
  • Gao, H., E. F. Wood, M. Drusch, and M. F. McCabe, 2007: Copula-derived observation operators for assimilating TMI and soil moisture into land surface models. J. Hydrometeor., 8, 413429, doi:10.1175/JHM570.1.

    • Search Google Scholar
    • Export Citation
  • Gupta, V. H., H. Kling, K. K. Yilmaz, and G. F. Martinez, 2009: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377, 8091, doi:10.1016/j.jhydrol.2009.08.003.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 2012: Perception of climate change. Proc. Natl. Acad. Sci. USA, 109, E2415E2423, doi:10.1073/pnas.1205276109.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2013: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., F. W. Zwiers, P. A. Scott, and V. V. Kharin, 2004: Detectability of anthropogenic changes in annual temperature and precipitation extremes. J. Climate, 17, 36833700, doi:10.1175/1520-0442(2004)017<3683:DOACIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., T. L. Delworth, J. Lu, K. L. Findell, and T. R. Knutson, 2005: Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl. Acad. Sci. USA, 102, 17 89117 896, doi:10.1073/pnas.0509057102.

    • Search Google Scholar
    • Export Citation
  • Hisdal, H., K. Stahl, L. M. Tallaksen, and S. Demuth, 2001: Have streamflow droughts in Europe become more severe or frequent? Int. J. Climatol., 21, 317333, doi:10.1002/joc.619.

    • Search Google Scholar
    • Export Citation
  • Hollingsworth, A., D. B. Shaw, P. Lonnberg, L. Illari, K. Arpe, and A. J. Simmons, 1985: Monitoring of observation and analysis quality by a data assimilation system. Mon. Wea. Rev., 114, 861879, doi:10.1175/1520-0493(1986)114<0861:MOOAAQ>2.0.CO;2

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and R. W. Knight, 1997: The 1995 Chicago heat wave: How likely is a recurrence? Bull. Amer. Meteor. Soc., 78, 11071119, doi:10.1175/1520-0477(1997)078<1107:TCHWHL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., P. F. Craigmile, P. Guttorp, M. Haran, B. Sanso, and M. L. Stein, 2013: Uncertainty analysis in climate change assessments. Nat. Climate Change, 3, 769771, doi:10.1038/nclimate1980.

    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. Charles Griffin, 202 pp.

  • Klein Tank, A. M. G., F. W. Zwiers, and X. Zhang, 2009: Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. WMO Climate Data and Monitoring Rep. 72 and WMO Tech. Doc. 1500, 55 pp.

  • Kruger, A., 2006: Observed trends in daily precipitation indices in South Africa: 1910–2004. Int. J. Climatol., 26, 22752285, doi:10.1002/joc.1368.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275, doi:10.1109/TGRS.2007.895337.

    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., E. F. Wood, and J. R. Wallis, 1994: Hydro-climatological trends in the continental United States, 1948–88. J. Climate, 7, 586607, doi:10.1175/1520-0442(1994)007<0586:HCTITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lins, H. F., and J. R. Slack, 1999: Streamflow trends in the United States. Geophys. Res. Lett., 26, 227230, doi:10.1029/1998GL900291.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric test against trend. Econometrica, 13, 245259, doi:10.2307/1907187.

  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321, doi:10.1175/JTECH1976.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., D. Lohmann, P. R. Houser, E. F. Wood, and J. C. Schaake, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mitosek, H. T., 1995: Climate variability and change within the discharge time series: A statistical approach. Climatic Change, 29, 101116, doi:10.1007/BF01091641.

    • Search Google Scholar
    • Export Citation
  • Mood, A. M., F. A. Graybill, and D. C. Boes, 1974: Introduction to the Theory of Statistics. 3rd ed. McGraw-Hill, 564 pp.

  • New, M., M. Hulme, and P. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238, doi:10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • New, M., and Coauthors, 2006: Evidence of trends in daily climate extremes over southern and west Africa. J. Geophys. Res., 111, D14102, doi:10.1029/2005JD006289.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and Coauthors, 1998: Homogeneity adjustments of in situ atmospheric climate data: A review. Int. J. Climatol., 18, 14931517, doi:10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., X. Zhang, M. Brunet-India, and J. L. Vazquez-Aguirre, 2008: Changes in North American extremes derived from daily weather data. J. Geophys. Res., 113, D07113, doi:10.1029/2007JD009453.

    • Search Google Scholar
    • Export Citation
  • Pettitt, A. N., 1979: A non-parametric approach to the change-point problem. J. Roy. Stat. Soc., 28C, 126135.

  • Reeves, J., J. Chen, X. L. Wang, R. Lund, and Q. Lu, 2007: A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteor. Climatol., 46, 900915, doi:10.1175/JAM2493.1.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and R. D. Koster, 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett., 31, L19501, doi:10.1029/2004GL020938.

    • Search Google Scholar
    • Export Citation
  • Schar, C., and G. Jendritzky, 2004: Climate change: Hot news from summer 2003. Nature, 432, 559560, doi:10.1038/432559a.

  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, doi:10.1080/01621459.1968.10480934.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and E. F. Wood, 2008: Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Climate, 21, 432458, doi:10.1175/2007JCLI1822.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Coauthors, 2014: A drought monitoring and forecasting system for sub-Sahara African water resources and food security. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-12-00124.1, in press.

    • Search Google Scholar
    • Export Citation
  • Smith, A., L. Neal, and V. Russ, 2011: The integrated surface database: Recent developments and partnerships. Bull. Amer. Meteor. Soc., 92, 704708, doi:10.1175/2011BAMS3015.1.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite–based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., Jr., S. K. Gupta, S. J. Cox, J. C. Mikovitz, T. Zhang, and M. Chiacchio, 2004: 12-year surface radiation budget data set. GEWEX News, Vol. 14, No. 4, International GEWEX Project Office, Silver Spring, MD, 10–12.

  • Theil, H., 1950: A rank-invariant method of linear polynomial regression analysis. Indagationes Math., 12, 8591.

  • Troy, T. J., J. Sheffield, and E. F. Wood, 2011: Estimation of the terrestrial water budget over northern Eurasia through the use of multiple data sources. J. Climate, 24, 32723293, doi:10.1175/2011JCLI3936.1.

    • Search Google Scholar
    • Export Citation
  • Van de Beek, C. Z., H. Leijnse, P. J. J. F. Torfs, and R. Uijlenhoet, 2011: Climatology of daily rainfall semi-variance in the Netherlands. Hydrol. Earth Syst. Sci., 15, 171183, doi:10.5194/hess-15-171-2011.

    • Search Google Scholar
    • Export Citation
  • Venema, V., and Coauthors, 2012: Benchmarking homogenization algorithms for monthly data. Climate Past, 8, 89–115, doi:10.5194/cp-8-89-2012.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., F. Serinaldi, J. A. Smith, and W. F. Krajewski, 2009: On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour. Res., 45, W08417, doi:10.1029/2008WR007645.

    • Search Google Scholar
    • Export Citation
  • Wang, A., D. P. Lettenmaier, and J. Sheffield, 2011: Soil moisture drought in China. J. Climate, 24, 32573271, doi:10.1175/2011JCLI3733.1.

    • Search Google Scholar
    • Export Citation
  • Webster, R., and M. A. Oliver, 2007: Geostatistics for Environmental Scientists. 2nd ed. John Wiley and Sons, 330 pp.

  • Williams, A. P., and Coauthors, 2012: Recent summer precipitation trends in the Greater Horn of Africa and the emerging role of Indian Ocean sea surface temperature. Climate Dyn., 39, 23072328, doi:10.1007/s00382-011-1222-y.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier, 2002: Long range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, doi:10.1029/2001JD000659.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and Coauthors, 2005: Trends in Middle East climate extreme indices from 1950 to 2003. J. Geophys. Res., 110, D22104, doi:10.1029/2005JD006181.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. Klein Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, doi:10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
  • Ziegler, A. D., J. Sheffield, E. P. Maurer, B. Nijssen, E. F. Wood, and D. P. Lettenmaier, 2003: Detection of intensification in global and continental-scale hydrological cycles: Temporal scale of evolution. J. Climate, 16, 535547, doi:10.1175/1520-0442(2003)016<0535:DOIIGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1126 459 34
PDF Downloads 744 192 29