U.K. HiGEM: Impacts of Desert Dust Radiative Forcing in a High-Resolution Atmospheric GCM

M. J. Woodage National Centre for Earth Observation, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by M. J. Woodage in
Current site
Google Scholar
PubMed
Close
and
S. Woodward Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by S. Woodward in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This work investigates the impacts of mineral dust aerosol on climate using the atmospheric component of the U.K. High-Resolution Global Environmental Model (HiGEM) with an interactive embedded mineral dust scheme. It extends earlier work by Woodage et al. in which direct radiative forcing due to dust was calculated and in which it was reported that the global total dust burden was increased when this was included in the model. Here this result is analyzed further and the regional and global impacts are investigated. It is found that particle size distribution is critically important: In regions where large, more absorbent dust particles are present, burdens are increased because of the enhanced heating aloft, which strengthens convection, whereas, in areas where smaller, more scattering particles dominate, the surface layers are stabilized and dust emissions are decreased. The consequent changes in dust load and particle size distribution when radiative effects are included make the annual mean global forcing more positive at the top of the atmosphere (0.33 versus 0.05 W m−2). Impacts on the West African monsoon are also considered, where Saharan dust brings about a northward shift in the summertime intertropical convergence zone with increased precipitation on its northern side. This contrasts with results from some other studies, but the authors’ findings are supported by recent observational data. They argue that the impacts depend crucially on the size distribution and radiative properties of the dust particles, which are poorly known on a global scale and differ here from those used in other models.

Corresponding author address: Dr. M. J. Woodage, Department of Meteorology, Harry Pitt Building, 3 Earley Gate, University of Reading, Reading, Berkshire RG6 6AL, United Kingdom. E-mail: m.j.woodage@reading.ac.uk

Abstract

This work investigates the impacts of mineral dust aerosol on climate using the atmospheric component of the U.K. High-Resolution Global Environmental Model (HiGEM) with an interactive embedded mineral dust scheme. It extends earlier work by Woodage et al. in which direct radiative forcing due to dust was calculated and in which it was reported that the global total dust burden was increased when this was included in the model. Here this result is analyzed further and the regional and global impacts are investigated. It is found that particle size distribution is critically important: In regions where large, more absorbent dust particles are present, burdens are increased because of the enhanced heating aloft, which strengthens convection, whereas, in areas where smaller, more scattering particles dominate, the surface layers are stabilized and dust emissions are decreased. The consequent changes in dust load and particle size distribution when radiative effects are included make the annual mean global forcing more positive at the top of the atmosphere (0.33 versus 0.05 W m−2). Impacts on the West African monsoon are also considered, where Saharan dust brings about a northward shift in the summertime intertropical convergence zone with increased precipitation on its northern side. This contrasts with results from some other studies, but the authors’ findings are supported by recent observational data. They argue that the impacts depend crucially on the size distribution and radiative properties of the dust particles, which are poorly known on a global scale and differ here from those used in other models.

Corresponding author address: Dr. M. J. Woodage, Department of Meteorology, Harry Pitt Building, 3 Earley Gate, University of Reading, Reading, Berkshire RG6 6AL, United Kingdom. E-mail: m.j.woodage@reading.ac.uk
Save
  • Allan, R. P., M. J. Woodage, S. F. Milton, M. E. Brooks, and J. M. Haywood, 2011: Examination of long-wave radiative bias in general circulation models over North Africa during May–July. Quart. J. Roy. Meteor. Soc., 137, 11791192, doi:10.1002/qj.717.

    • Search Google Scholar
    • Export Citation
  • Bagnold, R. A., 1941: The Physics of Blown Sand and Desert Dunes.Methuen, 265 pp.

  • Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert, 2007: Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmos. Chem. Phys., 7, 8195, doi:10.5194/acp-7-81-2007.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and S. G. Benjamin, 1980: Radiative heating rates for Saharan dust. J. Atmos. Sci.,37, 193–213, doi:10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2.

  • Claquin, T., M. Schulz, Y. Balkanski, and O. Boucher, 1998: Uncertainties in assessing radiative forcing by mineral dust. Tellus, 50B, 491505, doi:10.1034/j.1600-0889.1998.t01-2-00007.x.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 1999: Generation of the African easterly jet and its role in determining West African precipitation. J. Climate, 12, 11651184, doi:10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deepak, A., and H. E. Gerber, Eds., 1983. Report of the experts meeting on aerosols and their climatic effects. WMO Rep. WCP-55, 107 pp.

  • Duce, R. A., 1995: Sources, distributions and fluxes of mineral aerosols and their relationship to climate. Aerosol Forcing of Climate: Report of the Dahlem Workshop on Aerosol Forcing of Climate, R. J. Charlson and J. Heintzenberg, Eds., John Wiley & Sons, 4372.

  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689719, doi:10.1002/qj.49712253107.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

    • Search Google Scholar
    • Export Citation
  • Gillette, D. A., 1979: Environmental factors affecting dust emission by wind erosion. Saharan Dust: Mobilization, Transport, Deposition, C. Morales, Ed., John Wiley & Sons, 71–91.

  • Harries, J. E., and Coauthors, 2005: The Geostationary Earth Radiation Budget project. Bull. Amer. Meteor. Soc., 86, 945960, doi:10.1175/BAMS-86-7-945.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., R. P. Allan, I. Culverwell, T. Slingo, S. Milton, J. M. Edwards, and N. Clerbaux, 2005: Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003? J. Geophys. Res., 110, D05105, doi:10.1029/2004JD005232.

    • Search Google Scholar
    • Export Citation
  • Huneeus, N., F. Chevallier, and O. Boucher, 2012: Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model. Atmos. Chem. Phys., 12, 45854606, doi:10.5194/acp-12-4585-2012.

    • Search Google Scholar
    • Export Citation
  • Konare, A., A. S. Zakey, F. Solmon, F. Giorgi, S. Rauscher, S. Ibrah, and X. Bi, 2008: A regional climate modeling study of the effect of desert dust on the West African monsoon. J. Geophys. Res., 113, D12206, doi:10.1029/2007JD009322.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and K. M. Kim, 2006: Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett., 33, L21810, doi:10.1029/2006GL027546.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., M. K. Kim, and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855864, doi:10.1007/s00382-006-0114-z.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., K. M. Kim, Y. C. Sud, and G. K. Walker, 2009: A GCM study of the response of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing. Ann. Geophys., 27, 40234037, doi:10.5194/angeo-27-4023-2009.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., M. K. Kim, K. M. Kim, and W. S. Lee, 2010: Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ. Res. Lett., 5, 025204, doi:10.1088/1748-9326/5/2/025204.

    • Search Google Scholar
    • Export Citation
  • Menon, S., J. Hansen, L. Nazarenko, and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 22502253, doi:10.1126/science.1075159.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., and I. Tegen, 1998: Climate response to soil dust aerosols. J. Climate, 11, 32473267, doi:10.1175/1520-0442(1998)011<3247:CRTSDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., J. Perlwitz, and I. Tegen, 2004a: Feedback upon dust emission by dust radiative forcing through the planetary boundary layer. J. Geophys. Res., 109, D24209, doi:10.1029/2004JD004912.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., I. Tegen, and J. Perlwitz, 2004b: Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J. Geophys. Res., 109, D04203, doi:10.1029/2003JD004085.

    • Search Google Scholar
    • Export Citation
  • Milton, S. F., G. Greed, M. E. Brooks, J. Haywood, B. Johnson, R. P. Allan, A. Slingo, and W. M. F. Grey, 2008: Modeled and observed atmospheric radiation balance during the West African dry season: Role of mineral dust, biomass burning aerosol, and surface albedo. J. Geophys. Res., 113, D00C02, doi:10.1029/2007JD009741.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E, 2009. A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Climate Dyn.,32, 1155–1171, doi:10.1007/s00382-008-0514-3.

  • Parker, D. J., C. D. Thorncroft, R. R. Burton, and A. Diongue-Niang, 2005: Analysis of the African easterly jet, using aircraft observations from the JET2000 experiment. Quart. J. Roy. Meteor. Soc., 131, 14611482, doi:10.1256/qj.03.189.

    • Search Google Scholar
    • Export Citation
  • Pérez, C., S. Nickovic, G. Pejanovic, J. M. Baldasano, and E. Özsoy, 2006: Interactive dust–radiation modeling: A step to improve weather forecasts. J. Geophys. Res., 111, D16206, doi:10.1029/2005JD006717.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and R. L. Miller, 2010: Cloud cover increase with increasing aerosol absorptivity: A counterexample to the conventional semidirect aerosol effect. J. Geophys. Res., 115, D08203, doi:10.1029/2009JD012637.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., I. Tegen, and R. L. Miller, 2001: Interactive soil dust aerosol model in the GISS GCM: 1. Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols. J. Geophys. Res., 106, 18 16718 192, doi:10.1029/2000JD900668.

    • Search Google Scholar
    • Export Citation
  • Pye, K., 1987: Aeolian Dust and Dust Deposits. Academic Press, 334 pp.

  • Rodwell, M. J., and T. Jung, 2008: Understanding the local and global impacts of model physics changes: An aerosol example. Quart. J. Roy. Meteor. Soc., 134, 14791497, doi:10.1002/qj.298.

    • Search Google Scholar
    • Export Citation
  • Ryder, C. L., and Coauthors, 2013: Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign. Atmos. Chem. Phys., 13, 303325, doi:10.5194/acp-13-303-2013.

    • Search Google Scholar
    • Export Citation
  • Shaffrey, L. C., and Coauthors, 2009: U.K. HiGEM: The new U.K. High-Resolution Global Environment Model—Model description and basic evaluation. J. Climate, 22, 18611896, doi:10.1175/2008JCLI2508.1.

    • Search Google Scholar
    • Export Citation
  • Sokolik, I. N., A. Androvna, and T. C. Johnson, 1993: Complex refractive index of atmospheric dust aerosols. Atmos. Environ., 27, 24952502, doi:10.1016/0960-1686(93)90021-P.

    • Search Google Scholar
    • Export Citation
  • Sokolik, I. N., O. B. Toon, and R. W. Bergstrom, 1998: Modelling the radiative characteristics of airborne mineral aerosols at infrared wavelengths. J. Geophys. Res., 103, 88138826, doi:10.1029/98JD00049.

    • Search Google Scholar
    • Export Citation
  • Solmon, F., M. Mallet, N. Elguindi, F. Giorgi, A. Zakey, and A. Konaré, 2008: Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties. Geophys. Res. Lett., 35, L24705, doi:10.1029/2008GL035900.

    • Search Google Scholar
    • Export Citation
  • Solmon, F., N. Elguindi, and M. Mallet, 2012: Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Climate Res., 52, 97113, doi:10.3354/cr01039.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., and A. Lacis, 1996: Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res., 101, 19 23719 244, doi:10.1029/95JD03610.

    • Search Google Scholar
    • Export Citation
  • Todd, M. C., and Coauthors, 2008: Quantifying uncertainty in estimates of mineral dust flux: An intercomparison of model performance over the Bodélé Depression, northern Chad. J. Geophys. Res., 113, D24107, doi:10.1029/2008JD010476.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., C. Cardinali, J.-J. Morcrette, and M. Rodwell, 2005: Influence of aerosol climatology on forecasts of the African easterly jet. Geophys. Res. Lett., 32, L10801, doi:10.1029/2004GL022189.

    • Search Google Scholar
    • Export Citation
  • Weinzierl, B., and Coauthors, 2011: Microphysical and optical properties of dust and tropical biomass burning aerosol layers in the Cape Verde region—An overview of the airborne in situ and lidar measurements during SAMUM-2. Tellus, 63B, 589618, doi:10.1111/j.1600-0889.2011.00566.x.

    • Search Google Scholar
    • Export Citation
  • Wilcox, E. M., K. M. Lau, and K.-M. Kim, 2010: A northward shift of the North Atlantic Ocean intertropical convergence zone in response to summertime Saharan dust outbreaks. Geophys. Res. Lett., 37, L04804, doi:10.1029/2009GL041774.

    • Search Google Scholar
    • Export Citation
  • Wilson, M. F., and A. Henderson-Sellers, 1985: A global archive of land cover and soils data for use in general circulation climate models. Int. J. Climatol., 5, 119143, doi:10.1002/joc.3370050202.

    • Search Google Scholar
    • Export Citation
  • Woodage, M. J., A. Slingo, S. Woodward, and R. E. Comer, 2010: U.K. HiGEM: Simulations of desert dust and biomass burning aerosols with a high-resolution atmospheric GCM. J. Climate, 23, 16361659, doi:10.1175/2009JCLI2994.1.

    • Search Google Scholar
    • Export Citation
  • Woodward, S., 2001: Modelling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model. J. Geophys. Res., 106, 18 15518 166, doi:10.1029/2000JD900795.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoshioka, M., N. M. Mahowald, A. J. Conley, W. D. Collins, D. W. Fillmore, C. S. Zender, and D. B. Coleman, 2007: Impact of desert dust radiative forcing on Sahel precipitation: Relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. J. Climate, 20, 14451467, doi:10.1175/JCLI4056.1.

    • Search Google Scholar
    • Export Citation
  • Yue, X., H. Liao, H. J. Wang, S. L. Li, and J. P. Tang, 2011: Role of sea surface temperature responses in simulation of the climatic effect of mineral dust aerosol. Atmos. Chem. Phys., 11, 60496062, doi:10.5194/acp-11-6049-2011.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 479 260 133
PDF Downloads 176 48 5