Climatology and Variability of Precipitation in the Twentieth-Century Reanalysis

Dong Eun Lee Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Dong Eun Lee in
Current site
Google Scholar
PubMed
Close
and
Michela Biasutti Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Michela Biasutti in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The performance of the Twentieth-Century Reanalysis (20CR) in reproducing observed monthly mean precipitation over the global domain is compared to that of comprehensive reanalyses that also assimilate upper-air and satellite observations [the Climate Forecast System Reanalysis (CFSR), ECMWF Interim Re-Analysis (ERA-Interim), and NCEP–U.S. Department of Energy reanalysis (NCEP2)] and to that of an atmospheric general circulation model (GCM) ensemble simulation [Global Ocean Global Atmosphere (GOGA)] that is forced with observed sea surface temperature (SST). Wintertime rainfall variability in the midlatitude continents and storm tracks is captured with great accuracy, similar to the comprehensive reanalyses, but summertime rainfall is not, probably in consequence of the greater importance of convection in the summer season. Over the tropics, the accuracy of all reanalyses is much less than over the midlatitudes. Over tropical land, the performance of 20CR is better than NCEP2 and similar to ERA-Interim and CFSR, but over the tropical oceans the most recent reanalyses perform significantly better. Across the twentieth century, the clearest gain from the assimilation of a denser observational dataset is the expansion of the area of good skill. A comparison of the accuracy and ensemble spread in the 20CR and GOGA ensembles highlights regions where SST forcing is a stronger source of skill than data assimilation for 20CR. In contrast, for some tropical regions such as the Sahel, the assimilation of sea level pressure is effective in constraining precipitation values—but model biases in the teleconnections with global SST limit the performance of 20CR.

Corresponding author address: Michela Biasutti, Lamont-Doherty Earth Observatory, 61 Route 9W, Palisades, NY 10964. E-mail: biasutti@ldeo.columbia.edu

Abstract

The performance of the Twentieth-Century Reanalysis (20CR) in reproducing observed monthly mean precipitation over the global domain is compared to that of comprehensive reanalyses that also assimilate upper-air and satellite observations [the Climate Forecast System Reanalysis (CFSR), ECMWF Interim Re-Analysis (ERA-Interim), and NCEP–U.S. Department of Energy reanalysis (NCEP2)] and to that of an atmospheric general circulation model (GCM) ensemble simulation [Global Ocean Global Atmosphere (GOGA)] that is forced with observed sea surface temperature (SST). Wintertime rainfall variability in the midlatitude continents and storm tracks is captured with great accuracy, similar to the comprehensive reanalyses, but summertime rainfall is not, probably in consequence of the greater importance of convection in the summer season. Over the tropics, the accuracy of all reanalyses is much less than over the midlatitudes. Over tropical land, the performance of 20CR is better than NCEP2 and similar to ERA-Interim and CFSR, but over the tropical oceans the most recent reanalyses perform significantly better. Across the twentieth century, the clearest gain from the assimilation of a denser observational dataset is the expansion of the area of good skill. A comparison of the accuracy and ensemble spread in the 20CR and GOGA ensembles highlights regions where SST forcing is a stronger source of skill than data assimilation for 20CR. In contrast, for some tropical regions such as the Sahel, the assimilation of sea level pressure is effective in constraining precipitation values—but model biases in the teleconnections with global SST limit the performance of 20CR.

Corresponding author address: Michela Biasutti, Lamont-Doherty Earth Observatory, 61 Route 9W, Palisades, NY 10964. E-mail: biasutti@ldeo.columbia.edu
Save
  • Adler, R. F., G. Gu, and G. J. Huffman, 2012: Estimating climatological bias errors for the Global Precipitation Climatology Project (GPCP). J. Appl. Meteor. Climatol., 51, 8499, doi:10.1175/JAMC-D-11-052.1.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., A. Sobel, and Y. Kushnir, 2006: AGCM precipitation biases in the tropical Atlantic. J. Climate, 19, 935958, doi:10.1175/JCLI3673.1.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., J. Chen, F. R. Robertson, and R. F. Adler, 2008: Evaluation of global precipitation in reanalyses. J. Appl. Meteor. Climatol., 47, 22792299, doi:10.1175/2008JAMC1921.1.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., D. Mocko, J. O. Roads, and A. Ruane, 2009: A multimodel analysis for the coordinated enhanced observing period (CEOP). J. Hydrometeor., 10, 912934, doi:10.1175/2009JHM1090.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Compo, G., J. S. Whitaker, and P. D. Sardeshmukh, 2006: Feasibility of a 100-year reanalysis using only surface pressure data. Bull. Amer. Meteor. Soc., 87, 175190, doi:10.1175/BAMS-87-2-175.

    • Search Google Scholar
    • Export Citation
  • Compo, G., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2005: Limitations of time-slice experiments for predicting regional climate change over South Asia. Climate Dyn., 24, 373391, doi:10.1007/s00382-004-0509-7.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and G. Villarini, 2012: Detecting inhomogeneities in the twentieth century reanalysis over the central United States. J. Geophys. Res., 117, D05123, doi:10.1029/2011JD016988.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 10271030, doi:10.1126/science.1089357.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2005: Dynamics of the boreal summer African monsoon in the NSIPP1 atmospheric model. Climate Dyn., 25, 517535, doi:10.1007/s00382-005-0056-x.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623–642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., and L. Greischar, 1993: Further work on the prediction of northeast Brazil rainfall anomalies. J. Climate, 6, 743758, doi:10.1175/1520-0442(1993)006<0743:FWOTPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Hurrell, J. Eischeid, and A. Phillips, 2006: Detection and attribution of twentieth-century northern and southern African rainfall change. J. Climate, 19, 39894008, doi:10.1175/JCLI3842.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., D. Frierson, and S. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 28452850, doi:10.1002/grl.50502.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and Coauthors, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. S., M. J. Suarez, and M. Heiser, 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1, 2646, doi:10.1175/1525-7541(2000)001<0026:VAPOPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krueger, O., F. Schenk, F. Feser, and R. Weisse, 2013: Inconsistencies between long-term trends in storminess derived from the 20CR reanalysis and observations. J. Climate, 26, 868874, doi:10.1175/JCLI-D-12-00309.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 1998: Specification of regional sea surface temperatures in atmospheric general circulation model simulations. J. Geophys. Res., 103, 89018907, doi:10.1029/98JD00427.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., and J. D. Neelin, 2007: A prototype for convective margin shifts. Geophys. Res. Lett., 34, L05812, doi:10.1029/2006GL027305.

    • Search Google Scholar
    • Export Citation
  • Lu, J., and T. L. Delworth, 2005: Oceanic forcing of the late 20th century Sahel drought. Geophys. Res. Lett., 32, L22706, doi:10.1029/2005GL023316.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., M. V. Struglia, N. Zeng, and K.-M. Lau, 2002: The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. J. Climate, 15, 16741690, doi:10.1175/1520-0442(2002)015<1674:THCITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nobre, C., and J. Shukla, 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9, 24642479, doi:10.1175/1520-0442(1996)009<2464:VOSSTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. J. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19, 446469, doi:10.1175/JCLI3637.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2009: The CLIVAR C20C project: Selected twentieth century climate events. Climate Dyn., 33, 603614, doi:10.1007/s00382-008-0451-1.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, doi:10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Naik, 2012: A mechanisms-based approach to detecting recent anthropogenic hydroclimate change. J. Climate, 25, 236261, doi:10.1175/JCLI-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40654088, doi:10.1175/JCLI3522.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 26–35.

  • Smith, T. M., R. Reynolds, T. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Stachnik, J. P., and C. Schumacher, 2011: A comparison of the Hadley circulation in modern reanalysis. J. Geophys. Res., 116, D22102, doi:10.1029/2011JD016677.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., 2004: On the (in)homogeneity of reanalysis products. J. Climate, 17, 38663873, doi:10.1175/1520-0442(2004)017<3866:OTIORP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sturaro, G., 2003: Patterns of variability in the satellite Microwave Sounding Unit temperature record: Comparison with surface and reanalysis data. Int. J. Climatol., 23, 17991820, doi:10.1002/joc.975.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106 (D7), 7183–7192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Wang, X. L., Y. Feng, G. P. Compo, V. R. Swail, F. W. Zwiers, R. J. Allan, and P. D. Sardeshmukh, 2013: Trends and low frequency variability of extra-tropical cyclone activity in the ensemble of twentieth century reanalysis. Climate Dyn., 40, 27752800, doi:10.1007/s00382-012-1450-9.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., Y. Feng, G. P. Compo, F. W. Zwiers, R. J. Allan, V. R. Swail, and P. D. Sardeshmukh, 2014: Is the storminess in the twentieth century reanalysis really inconsistent with observations? A reply to the comment by Krueger et al. (2013b). Climate Dyn., 42, 11131125, doi:10.1007/s00382-013-1828-3.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 11901200, doi:10.1175/1520-0493(2004)132<1190:RWRUED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lott, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25, 823842, doi:10.1002/joc.1166.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yin, X., B. E. Gleason, G. P. Compo, N. Matsui, and R. S. Vose, 2008: The International Surface Pressure Databank (ISPD) land component version 2.2. National Climatic Data Center, Asheville, NC, 12 pp. [Available online at ftp://ftp.ncdc.noaa.gov/pub/data/ispd/doc/ISPD2_2.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 434 198 16
PDF Downloads 186 60 3