Northern Hemisphere Glacier and Ice Cap Surface Mass Balance and Contribution to Sea Level Rise

Sebastian H. Mernild Climate, Ocean, and Sea Ice Modeling Group, Computational Physics and Methods, Los Alamos National Laboratory, Los Alamos, New Mexico, and Glaciology and Climate Change Laboratory, Center for Scientific Studies, Valdivia, Chile

Search for other papers by Sebastian H. Mernild in
Current site
Google Scholar
PubMed
Close
,
Glen E. Liston Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Search for other papers by Glen E. Liston in
Current site
Google Scholar
PubMed
Close
, and
Christopher A. Hiemstra U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, Alaska

Search for other papers by Christopher A. Hiemstra in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mass changes and mass contribution to sea level rise from glaciers and ice caps (GIC) are key components of the earth’s changing sea level. GIC surface mass balance (SMB) magnitudes and individual and regional mean conditions and trends (1979–2009) were simulated for all GIC having areas greater or equal to 0.5 km2 in the Northern Hemisphere north of 25°N latitude (excluding the Greenland Ice Sheet). Recent datasets, including the Randolph Glacier Inventory (RGI; v. 2.0), the NOAA Global Land One-km Base Elevation Project (GLOBE), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) products, together with recent SnowModel developments, allowed relatively high-resolution (1-km horizontal grid; 3-h time step) simulations of GIC surface air temperature, precipitation, sublimation, evaporation, surface runoff, and SMB. Simulated SMB outputs were calibrated against 1422 direct glaciological annual SMB observations of 78 GIC. The overall GIC mean annual and mean summer air temperature, runoff, and SMB loss increased during the simulation period. The cumulative GIC SMB was negative for all regions. The SMB contribution to sea level rise was largest from Alaska and smallest from the Caucasus. On average, the contribution to sea level rise was 0.51 ± 0.16 mm sea level equivalent (SLE) yr−1 for 1979–2009 and ~40% higher 0.71 ± 0.15 mm SLE yr−1 for the last decade, 1999–2009.

Corresponding author address: Dr. Sebastian H. Mernild, Glaciology and Climate Change Laboratory, Center for Scientific Studies/Centro de Estudios Cientificos (CECs), 5110466 Valdivia, Chile. E-mail: smernild@gmail.com

Abstract

Mass changes and mass contribution to sea level rise from glaciers and ice caps (GIC) are key components of the earth’s changing sea level. GIC surface mass balance (SMB) magnitudes and individual and regional mean conditions and trends (1979–2009) were simulated for all GIC having areas greater or equal to 0.5 km2 in the Northern Hemisphere north of 25°N latitude (excluding the Greenland Ice Sheet). Recent datasets, including the Randolph Glacier Inventory (RGI; v. 2.0), the NOAA Global Land One-km Base Elevation Project (GLOBE), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) products, together with recent SnowModel developments, allowed relatively high-resolution (1-km horizontal grid; 3-h time step) simulations of GIC surface air temperature, precipitation, sublimation, evaporation, surface runoff, and SMB. Simulated SMB outputs were calibrated against 1422 direct glaciological annual SMB observations of 78 GIC. The overall GIC mean annual and mean summer air temperature, runoff, and SMB loss increased during the simulation period. The cumulative GIC SMB was negative for all regions. The SMB contribution to sea level rise was largest from Alaska and smallest from the Caucasus. On average, the contribution to sea level rise was 0.51 ± 0.16 mm sea level equivalent (SLE) yr−1 for 1979–2009 and ~40% higher 0.71 ± 0.15 mm SLE yr−1 for the last decade, 1999–2009.

Corresponding author address: Dr. Sebastian H. Mernild, Glaciology and Climate Change Laboratory, Center for Scientific Studies/Centro de Estudios Cientificos (CECs), 5110466 Valdivia, Chile. E-mail: smernild@gmail.com
Save
  • Allerup, P., H. Madsen, and F. Vejen, 1998: Estimating true precipitation in Arctic areas. Nordic Hydrological Programme Rep. 44, 19.

  • Allerup, P., H. Madsen, and F. Vejen, 2000a: Correction of precipitation based on off-site weather information. Atmos. Res., 53, 231250, doi:10.1016/S0169-8095(99)00051-4.

    • Search Google Scholar
    • Export Citation
  • Allerup, P., H. Madsen, and F. Vejen, 2000b: Correction of observed precipitation in Greenland. Proc. Nordic Hydrological Conf., Uppsala, Sweden, NHF/NAH Nordic Association for Hydrology, 1–8.

  • Andreassen, L. M., S. H. Winsvold, F. Paul, and J. E. Hausberg, 2012: Inventory of Norwegian Glaciers. L. M. Andreassen and S. H. Winsvold, Eds., Norwegian Water Resources and Energy Directorate, 242 pp.

  • Arendt, A., and Coauthors, 2012: Randolph Glacier Inventory (v2.0): A dataset of global glacier outlines. Global Land Ice Measurements from Space, Boulder Colorado, digital media (with area corrections downloaded 2012). [Available online at http://www.glims.org/RGI/.]

  • Benn, D. I., and D. J. A. Evans, 2002: Glaciers and Glaciation. Arnold, 734 pp.

  • Bhutiyani, M. R., 1999: Mass-balance studies on Siachen Glacier in the Nubra Valley, Karakoram Himalaya, India. J. Glaciol., 45 (149), 112118.

    • Search Google Scholar
    • Export Citation
  • Bolch, T., B. Menounos, and R. Wheate, 2010: Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ., 114, 127137, doi:10.1016/j.rse.2009.08.015.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., 2008: NASA’s Modern Era Retrospective Analysis for Research and Applications: Integrating Earth observations. Earthzine. [Available online at http://www.earthzine.org/2008/09/26/nasas-modern-era-retrospective-analysis/.]

  • Bosilovich, M. G., J. Chen, F. R. Robertson, and R. F. Adler, 2008: Evaluation of global precipitation re-analyses. J. Appl. Meteor. Climatol., 47, 22792299, doi:10.1175/2008JAMC1921.1.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., R. R. Franklin, and J. Chen, 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739, doi:10.1175/2011JCLI4175.1.

    • Search Google Scholar
    • Export Citation
  • Box, J. E., 2002: Survey of Greenland instrumental temperature records: 1873–2001. Int. J. Climatol., 22, 18291847, doi:10.1002/joc.852.

    • Search Google Scholar
    • Export Citation
  • Bruland, O., G. E. Liston, J. Vonk, and A. Killingtveit, 2004: Modelling the snow distribution at two high Arctic sites at Svalbard, Norway, and at a sub-Arctic site in central Norway. Nord. Hydrol., 35, 191208.

    • Search Google Scholar
    • Export Citation
  • Cogley, J. G., 2009: Geodetic and direct mass-balance measurements: Comparison and joint analysis. Ann. Glaciol., 50, 96100, doi:10.3189/172756409787769744.

    • Search Google Scholar
    • Export Citation
  • Cogley, J. G., 2012: The future of the world’s glaciers. The Future of the World’s Climate, 2nd ed., A. Henderson-Sellers and K. McGuffie, Eds., Elsevier, 205–218, doi:10.1016/B978-0-12-386917-3.00008-7.

  • Cuffey, K. M., and W. S. B. Paterson, 2010: The Physics of Glaciers. 4th ed. Elsevier, 708 pp.

  • Cullather, R. I., and M. G. Bosilovich, 2011: The moisture budget of the polar atmosphere in MERRA. J. Climate, 24, 28612879, doi:10.1175/2010JCLI4090.1.

    • Search Google Scholar
    • Export Citation
  • Dyurgerov, M. B., 2010. Data of glaciological studies—Reanalysis of glacier changes: From the IGY to the IPY, 1960–2008. Publication 108, Institute of Arctic and Alpine Research, 116 pp.

  • Dyurgerov, M. B., and M. F. Meier, 2005: Glaciers and the changing Earth system: A 2004 snapshot. Occasional Paper 58, Institute of Arctic and Alpine Research, Boulder, Colorado, 117 pp.

  • Finnis, J., J. Cassano, M. Holland, M. C. Serreze, and P. Uotila, 2009a: Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models. Part 1: The Mackenzie River Basin. Int. J. Climatol., 29, 12261243, doi:10.1002/joc.1753.

    • Search Google Scholar
    • Export Citation
  • Finnis, J., J. Cassano, M. Holland, M. C. Serreze, and P. Uotila, 2009b: Synoptically forced hydroclimatology of major Arctic watersheds in general circulation models. Part 2: Eurasian watersheds. Int. J. Climatol., 29, 12441261, doi:10.1002/joc.1769.

    • Search Google Scholar
    • Export Citation
  • Gardelle, J., E. Berthier, and Y. Arnaud, 2012: Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci., 5, 322325, doi:10.1038/ngeo1450.

    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., and Coauthors, 2013: A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852857, doi:10.1126/science.1234532.

    • Search Google Scholar
    • Export Citation
  • Glazovsky, A., and Y. Macheret, 2006: Glaciation in north and central Eurasia in present time (in Russian with English summary). Eurasian Arctic, V. M. Kotlyakov, Eds., Nauka, 97–114 and 438–445.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2008: Increased runoff from melt from the Greenland Ice Sheet: A response to global warming. J. Climate, 21, 331341, doi:10.1175/2007JCLI1964.1.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., S. H. Mernild, J. Cappelen, and K. Steffen, 2012: Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records. Environ. Res. Lett., 7, 045404, doi:10.1088/1748-9326/7/4/045404.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., J. M. Jones, J. Cappelen, S. H. Mernild, L. Wood, K. Steffen, and P. Huybrechts, 2013: Discerning the influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and melt. Int. J. Climatol., 33, 862880, doi:10.1002/joc.3475.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Hasholt, B., G. E. Liston, and N. T. Knudsen, 2003: Snow distribution modelling in the Ammassalik region, South East Greenland. Nord. Hydrol., 34, 116.

    • Search Google Scholar
    • Export Citation
  • Hastings, D. A., and Coauthors, 1999: The Global Land One-km Base Elevation (GLOBE) digital elevation model, version 1.0. NOAA, National Geophysical Data Center, digital media. [Available online at http://www.ngdc.noaa.gov/mgg/topo/globe.html.]

  • Hiemstra, C. A., G. E. Liston, and W. A. Reiners, 2002: Snow redistribution by wind and interactions with vegetation at upper treeline in the Medicine Bow Mountains, Wyoming, USA. Arct. Antarct. Alp. Res., 34, 262273, doi:10.2307/1552483.

    • Search Google Scholar
    • Export Citation
  • Hiemstra, C. A., G. E. Liston, and W. A. Reiners, 2006: Observing, modelling, and validating snow redistribution by wind in a Wyoming upper treeline landscape. Ecol. Modell., 197, 3551, doi:10.1016/j.ecolmodel.2006.03.005.

    • Search Google Scholar
    • Export Citation
  • Hinzman, L. D., and Coauthors, 2005: Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change, 72, 251298, doi:10.1007/s10584-005-5352-2.

    • Search Google Scholar
    • Export Citation
  • Hirabayashi, Y., P. Döll, and S. Kanae, 2010: Global-scale modeling of glacier mass balances for water resources assessments: Glacier mass changes between 1948 and 2006. J. Hydrol., 390, 245256, doi:10.1016/j.jhydrol.2010.07.001.

    • Search Google Scholar
    • Export Citation
  • Hock, R., M. de Woul, V. Radić, and M. Dyurgerov, 2009: Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys. Res. Lett., 36, L07501, doi:10.1029/2008GL037020.

    • Search Google Scholar
    • Export Citation
  • Huss, M., 2011: Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour. Res., 47, W07511, doi:10.1029/2010WR010299.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W., L. van Beek, M. Konz, A. Shrestha, and M. F. P. Bierkens, 2012: Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change, 110, 721736, doi:10.1007/s10584-011-0143-4.

    • Search Google Scholar
    • Export Citation
  • Kaser, G., J. G. Cogley, M. B. Dyurgerov, M. F. Meier, and A. Ohmura, 2006: Mass balance of glaciers and ice caps: Consensus estimates for 1961–2004. Geophys. Res. Lett., 33, L19501, doi:10.1029/2006GL027511.

    • Search Google Scholar
    • Export Citation
  • Kotlarski, S., F. Paul, and D. Jacob, 2010: Forcing a distributed glacier mass balance model with the regional climate model REMO. Part I: Climate model evaluation. J. Climate, 23, 15891606, doi:10.1175/2009JCLI2711.1.

    • Search Google Scholar
    • Export Citation
  • Leclercq, P. W., J. Oerlemans, and J. G. Cogley, 2011: Estimating the glacier contribution to sea-level rise for the period 1800–2005. Surv. Geophys., 32, 519535, doi:10.1007/s10712-011-9121-7.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 1995: Local advection of momentum, heat, and moisture during the melt of patchy snow covers. J. Appl. Meteor., 34, 17051715, doi:10.1175/1520-0450-34.7.1705.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and M. Sturm, 1998: A snow-transport model for complex terrain. J. Glaciol., 44, 498516.

  • Liston, G. E., and M. Sturm, 2002: Winter precipitation patterns in Arctic Alaska determined from a blowing-snow model and snow-depth observations. J. Hydrometeor., 3, 646659, doi:10.1175/1525-7541(2002)003<0646:WPPIAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and M. Sturm, 2004: The role of winter sublimation in the Arctic moisture budget. Nord. Hydrol., 35, 325334.

  • Liston, G. E., and K. Elder, 2006a: A distributed snow-evolution modeling system (SnowModel). J. Hydrometeor., 7, 12591276, doi:10.1175/JHM548.1.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and K. Elder, 2006b: A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeor., 7, 217234, doi:10.1175/JHM486.1.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and C. A. Hiemstra, 2008: A simple data assimilation system for complex snow distributions (SnowAssim). J. Hydrometeor., 9, 9891004, doi:10.1175/2008JHM871.1.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and C. A. Hiemstra, 2011: The changing cryosphere: Pan-Arctic snow trends (1979–2009). J. Climate, 24, 56915712, doi:10.1175/JCLI-D-11-00081.1.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and S. H. Mernild, 2012: Greenland freshwater runoff. Part I: A runoff routing model for glaciated and nonglaciated landscapes (HydroFlow). J. Climate, 25, 59976014, doi:10.1175/JCLI-D-11-00591.1.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., J.-G. Winther, O. Bruland, H. Elvehøy, and K. Sand, 1999: Below surface ice melt on the coastal Antarctic ice sheet. J. Glaciol., 45, 273285, doi:10.3189/002214399793377130.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., R. B. Haehnel, M. Sturm, C. A. Hiemstra, S. Berezovskaya, and R. D. Tabler, 2007: Simulating complex snow distributions in windy environments using SnowTran-3D. J. Glaciol., 53, 241256.

    • Search Google Scholar
    • Export Citation
  • Marzeion, B., A. H. Jarosch, and M. Hofer, 2012: Past and future sea-level change from the surface mass balance of glaciers. Cryosphere, 6, 12951322, doi:10.5194/tc-6-1295-2012.

    • Search Google Scholar
    • Export Citation
  • Meier, M. F., M. B. Dyurgerov, U. K. Rick, S. O’Neel, W. T. Pfeffer, R. S. Anderson, S. P. Anderson, and A. F. Glazovsky, 2007: Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317, 10641067, doi:10.1126/science.1143906.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., and B. Hasholt, 2006: Climatic control on river discharge simulations, Mittivakkat Glacier catchment, Ammassalik Island, southeast Greenland. Nord. Hydrol., 37, 327346, doi:10.2166/nh.2006.018.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., and G. E. Liston, 2010: The influence of air temperature inversion on snow melt and glacier surface mass-balance simulations, Ammassalik Island, southeast Greenland. J. Appl. Meteor. Climatol., 49, 4767, doi:10.1175/2009JAMC2065.1.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., and G. E. Liston, 2012: Greenland freshwater runoff. Part II: Distribution and trends, 1960–2010. J. Climate, 25, 60156035, doi:10.1175/JCLI-D-11-00592.1.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., G. E. Liston, B. Hasholt, and N. T. Knudsen, 2006: Snow distribution and melt modeling for Mittivakkat Glacier, Ammassalik Island, Southeast Greenland. J. Hydrometeor., 7, 808824, doi:10.1175/JHM522.1.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., B. U. Hansen, B. H. Jakobsen, and B. Hasholt, 2008a: Climatic conditions at the Mittivakkat Glacier catchment (1994–2006), Ammassalik Island, SE Greenland, and in a 109 years term perspective (1898–2006). Geogr. Tidsskrift, Dan. J. Geogr., 108, 5172, doi:10.1080/00167223.2008.10649574.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., D. L. Kane, B. U. Hansen, B. H. Jakobsen, B. Hasholt, and N. T. Knudsen, 2008b: Climate, glacier mass balance, and runoff (1993–2005) for the Mittivakkat Glacier catchment, Ammassalik Island, SE Greenland, and in a long term perspective (1898–1993). Hydrol. Res., 39, 239256, doi:10.2166/nh.2008.101.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., G. E. Liston, C. A. Hiemstra, K. Steffen, E. Hanna, and J. H. Christensen, 2009: Greenland Ice Sheet surface mass-balance modeling and freshwater flux for 2007, and in a 1995–2007 perspective. Hydrol. Processes, 23, 2470–2484, doi:10.1002/hyp.7354.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., G. E. Liston, C. A. Hiemstra, and J. H. Christensen, 2010a: Greenland Ice Sheet surface mass-balance modeling in a 131-yr perspective 1950–2080. J. Hydrometeor., 11, 325, doi:10.1175/2009JHM1140.1.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., G. E. Liston, K. Steffen, and P. Chylek, 2010b: Meltwater flux and runoff modeling in the ablation area of the Jakobshavn Isbræ, West Greenland. J. Glaciol., 56, 2032, doi:10.3189/002214310791190794.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., G. E. Liston, C. A. Hiemstra, J. H. Christensen, M. Stendel, and B. Hasholt, 2011a: Surface mass-balance and runoff modeling using HIRHAM4 RCM at Kangerlussuaq (Søndre Strømfjord), West Greenland, 1950–2080. J. Climate, 24, 609–623, doi:10.1175/2010JCLI3560.1.

  • Mernild, S. H., T. Mote, and G. E. Liston, 2011b: Greenland Ice Sheet surface melt extent and trends, 1960–2010. J. Glaciol., 57, 621628, doi:10.3189/002214311797409712.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., N. T. Knudsen, W. H. Lipscomb, J. C. Yde, J. K. Malmros, B. H. Jakobsen, and B. Hasholt, 2011c: Increasing mass loss from Greenland’s Mittivakkat Gletscher. Cryosphere, 5, 341348, doi:10.5194/tc-5-341-2011.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., J. K. Malmros, J. C. Yde, and N. T. Knudsen, 2012: Multi-decadal marine- and land-terminating glacier retreat in the Ammassalik region, southeast Greenland. Cryosphere, 6, 625639, doi:10.5194/tc-6-625-2012.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., W. H. Lipscomb, D. B. Bahr, V. Radić, and M. Zemp, 2013a: Global glacier retreat: A revised assessment of committed mass losses and sampling uncertainties. Cryosphere, 7, 15651577, doi:10.5194/tc-7-1565-2013. [Supplementary material is available at http://www.the-cryosphere.net/7/1565/2013/tc-7-1565-2013-supplement.zip.]

  • Mernild, S. H., N. T. Knudsen, M. J. Hoffman, J. C. Yde, W. L. Lipscomb, E. Hanna, J. K. Malmros, and R. S. Fausto, 2013b: Volume and velocity changes at Mittivakkat Gletscher, southeast Greenland, 1994–2012. J. Glaciol., 59, 660670, doi:10.3189/2013JoG13J017.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., E. Hanna, J. C. Yde, J. Cappelen, and J. K. Malmros, 2014: Coastal Greenland air temperature extremes and trends 1890–2010: Annual and monthly analysis. Int. J. Climatol., 34, 14721487, doi:10.1002/joc.3777.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., M. C. Spillane, D. B. Percival, M. Y. Wang, and H. O. Mofjeld, 2004: Seasonal and regional variation of pan-Arctic surface air temperature over the instrumental record. J. Climate, 17, 32633282, doi:10.1175/1520-0442(2004)017<3263:SARVOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Radić, V., and R. Hock, 2010: Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys. Res., 115, F01010, doi:10.1029/2009JF001373.

    • Search Google Scholar
    • Export Citation
  • Radić, V., A. Bliss, A. C. Beedlow, R. Hock, E. Miles, and J. G. Cogley, 2014: Regional and global projection of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dyn., 42, 37–58, doi:10.1007/s00382-013-1719-7.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow?: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, doi:10.1175/BAMS-D-11-00052.1.

    • Search Google Scholar
    • Export Citation
  • Rau, F., F. Mauz, S. Vogt, S. J. S. Khalsa, and B. Raup, 2005: Illustrated GLIMS Glacier Classification Manual—Glacier Classification Guidance for the GLIMS Glacier Inventory, version 1 (2005-02-10), 36 pp. [Available online at http://www.glims.org/MapsAndDocs/assets/GLIMS_Glacier-Classification-Manual_V1_2005-02-10.pdf.]

  • Rawlins, M. A., C. J. Willmott, A. Shiklomanov, E. Linder, S. Frolking, R. B. Lammers, and C. J. Vorosmarty, 2006: Evaluation of trends in derived snowfall and rainfall across Eurasia and linkages with discharge to the Arctic Ocean. Geophys. Res. Lett., 33, L07403, doi:10.1029/2005GL025231.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., M. G. Bosilovich, J. Chen, and T. L. Miller, 2011: The effect of satellite observing system changes on MERRA water and energy fluxes. J. Climate, 24, 51975217, doi:10.1175/2011JCLI4227.1.

    • Search Google Scholar
    • Export Citation
  • Suzuki, K., and Coauthors, 2011: Impact of land-use changes on snow in a forested region with heavy snowfall in Hokkido, Japan. Hydrol. Sci. J.,56 (3), 443–467, doi:10.1080/02626667.2011.565008.

  • Vaughan, D. G., and Coauthors, 2013: Observations: Cryosphere. Climate Change 2103: The Physical Science Basis, T. F. Stocker, et al., Cambridge University Press, 317–382.

  • Walsh, J. E., W. L. Chapman, V. Romanovsky, J. H. Christensen, and M. Stendel, 2008: Global climate model performance over Alaska and Greenland. J. Climate, 21, 61566174, doi:10.1175/2008JCLI2163.1.

    • Search Google Scholar
    • Export Citation
  • Woo, M. K., R. Heron, and P. Marsh, 1982: Basal ice in High Arctic snowpacks. Arct. Alp. Res., 14, 251260, doi:10.2307/1551157.

  • WGMS, 1989: World glacier inventory: Status 1988. W. Haeberli et al., Eds., World Glacier Monitoring Service, 458 pp.

  • WGMS, 2012: Fluctuations of glaciers 2005–2010 (Vol. X). M. Zemp et al., Eds., World Glacier Monitoring Service, 336 pp. [Publication based on database version, doi:10.5904/wgms-fog-2012-11.]

  • Yang, D., B. E. Goodison, J. R. Metcalfe, V. S. Golubev, R. Bates, T. Pangburn, and C. L. Hanson, 1998: Accuracy of NWS 8″ standard nonrecording precipitation gauge: Results and application of WMO intercomparison. J. Atmos. Oceanic Technol., 15, 5468, doi:10.1175/1520-0426(1998)015<0054:AONSNP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 348 117 9
PDF Downloads 168 48 6