Extreme Rainfall Variability in Australia: Patterns, Drivers, and Predictability

Andrew D. King ARC Centre of Excellence for Climate System Science, and Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Andrew D. King in
Current site
Google Scholar
PubMed
Close
,
Nicholas P. Klingaman National Centre for Atmospheric Science, and Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Nicholas P. Klingaman in
Current site
Google Scholar
PubMed
Close
,
Lisa V. Alexander ARC Centre of Excellence for Climate System Science, and Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Lisa V. Alexander in
Current site
Google Scholar
PubMed
Close
,
Markus G. Donat ARC Centre of Excellence for Climate System Science, and Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Markus G. Donat in
Current site
Google Scholar
PubMed
Close
,
Nicolas C. Jourdain Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Nicolas C. Jourdain in
Current site
Google Scholar
PubMed
Close
, and
Penelope Maher ARC Centre of Excellence for Climate System Science, and Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Penelope Maher in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Leading patterns of observed monthly extreme rainfall variability in Australia are examined using an empirical orthogonal teleconnection (EOT) method. Extreme rainfall variability is more closely related to mean rainfall variability during austral summer than in winter. The leading EOT patterns of extreme rainfall explain less variance in Australia-wide extreme rainfall than is the case for mean rainfall EOTs. The authors illustrate that, as with mean rainfall, the El Niño–Southern Oscillation (ENSO) has the strongest association with warm-season extreme rainfall variability, while in the cool season the primary drivers are atmospheric blocking and the subtropical ridge. The Indian Ocean dipole and southern annular mode also have significant relationships with patterns of variability during austral winter and spring. Leading patterns of summer extreme rainfall variability have predictability several months ahead from Pacific sea surface temperatures (SSTs) and as much as a year in advance from Indian Ocean SSTs. Predictability from the Pacific is greater for wetter-than-average summer months than for months that are drier than average, whereas for the Indian Ocean the relationship has greater linearity. Several cool-season EOTs are associated with midlatitude synoptic-scale patterns along the south and east coasts. These patterns have common atmospheric signatures denoting moist onshore flow and strong cyclonic anomalies often to the north of a blocking anticyclone. Tropical cyclone activity is observed to have significant relationships with some warm-season EOTs. This analysis shows that extreme rainfall variability in Australia can be related to remote drivers and local synoptic-scale patterns throughout the year.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-13-00715.s1.

Corresponding author address: Andrew D. King, Climate Change Research Centre, Level 4, Mathews Building, University of New South Wales, Sydney NSW 2052, Australia. E-mail: andrew.king@student.unsw.edu.au

Abstract

Leading patterns of observed monthly extreme rainfall variability in Australia are examined using an empirical orthogonal teleconnection (EOT) method. Extreme rainfall variability is more closely related to mean rainfall variability during austral summer than in winter. The leading EOT patterns of extreme rainfall explain less variance in Australia-wide extreme rainfall than is the case for mean rainfall EOTs. The authors illustrate that, as with mean rainfall, the El Niño–Southern Oscillation (ENSO) has the strongest association with warm-season extreme rainfall variability, while in the cool season the primary drivers are atmospheric blocking and the subtropical ridge. The Indian Ocean dipole and southern annular mode also have significant relationships with patterns of variability during austral winter and spring. Leading patterns of summer extreme rainfall variability have predictability several months ahead from Pacific sea surface temperatures (SSTs) and as much as a year in advance from Indian Ocean SSTs. Predictability from the Pacific is greater for wetter-than-average summer months than for months that are drier than average, whereas for the Indian Ocean the relationship has greater linearity. Several cool-season EOTs are associated with midlatitude synoptic-scale patterns along the south and east coasts. These patterns have common atmospheric signatures denoting moist onshore flow and strong cyclonic anomalies often to the north of a blocking anticyclone. Tropical cyclone activity is observed to have significant relationships with some warm-season EOTs. This analysis shows that extreme rainfall variability in Australia can be related to remote drivers and local synoptic-scale patterns throughout the year.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-13-00715.s1.

Corresponding author address: Andrew D. King, Climate Change Research Centre, Level 4, Mathews Building, University of New South Wales, Sydney NSW 2052, Australia. E-mail: andrew.king@student.unsw.edu.au

Supplementary Materials

    • Supplemental Materials (DOC 805.00 KB)
Save
  • Alexander, L. V., P. Hope, D. Collins, B. Trewin, A. Lynch, and N. Nicholls, 2007: Trends in Australia’s climate means and extremes: A global context. Aust. Meteor. Mag., 56, 118.

    • Search Google Scholar
    • Export Citation
  • Allan, R., 1988: El Niño-Southern Oscillation influences in the Australasian region. Prog. Phys. Geogr., 12, 313348, doi:10.1177/030913338801200301.

    • Search Google Scholar
    • Export Citation
  • Ashcroft, L., D. J. Karoly, and J. Gergis, 2014: Southeastern Australian climate variability 1860–2009: A multivariate analysis. Int. J. Climatol., 34, 1928–1944, doi:10.1002/joc.3812.

    • Search Google Scholar
    • Export Citation
  • Brown, J. R., S. B. Power, F. P. Delage, R. A. Colman, A. F. Moise, and B. F. Murphy, 2011: Evaluation of the South Pacific convergence zone in IPCC AR4 climate model simulations of the twentieth century. J. Climate, 24, 15651582, doi:10.1175/2010JCLI3942.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2006: SAM and regional rainfall in IPCC AR4 models: Can anthropogenic forcing account for southwest Western Australian winter rainfall reduction? Geophys. Res. Lett., 33, L24708, doi:10.1029/2006GL028037.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, T. Cowan, and A. Sullivan, 2010: Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact. J. Climate, 23, 49444955, doi:10.1175/2010JCLI3501.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, and T. Cowan, 2011: Influence of global-scale variability on the subtropical ridge over southeast Australia. J. Climate, 24, 60356053, doi:10.1175/2011JCLI4149.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Cowan, T., P. van Rensch, A. Purich, and W. Cai, 2013: The association of tropical and extratropical climate modes to atmospheric blocking across southeastern Australia. J. Climate, 26, 75557569, doi:10.1175/JCLI-D-12-00781.1.

    • Search Google Scholar
    • Export Citation
  • Evans, J. P., and I. Boyer-Souchet, 2012: Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña. Geophys. Res. Lett., 39, L10803, doi:10.1029/2012GL052014.

    • Search Google Scholar
    • Export Citation
  • Feng, J., J. Li, and Y. Li, 2010: Is there a relationship between the SAM and southwest Western Australian winter rainfall? J. Climate, 23, 60826089, doi:10.1175/2010JCLI3667.1.

    • Search Google Scholar
    • Export Citation
  • Gallant, A. J. E., K. J. Hennessy, and J. Risbey, 2007: Trends in rainfall indices for six Australian regions: 1910–2005. Aust. Meteor. Mag., 56, 223239.

    • Search Google Scholar
    • Export Citation
  • Gallant, A. J. E., A. S. Kiem, D. C. Verdon-Kidd, R. C. Stone, and D. J. Karoly, 2012: Understanding hydroclimate processes in the Murray–Darling Basin for natural resources management. Hydrol. Earth Syst. Sci., 16, 20492068, doi:10.5194/hess-16-2049-2012.

    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462, doi:10.1029/1999GL900003.

  • Haylock, M., and N. Nicholls, 2000: Trends in extreme rainfall indices for an updated high quality dataset for Australia, 1910-1998. Int. J. Climatol., 20, 15331541, doi:10.1002/1097-0088(20001115)20:13<1533::AID-JOC586>3.0.CO;2-J.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., E.-P. Lim, J. M. Arblaster, and D. L. T. Anderson, 2014: Causes and predictability of the record wet east Australian spring 2010. Climate Dyn., 42, 11551174, doi:10.1007/s00382-013-1700-5.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1986: Interannual variability of the Australian summer monsoon at Darwin: 1952–82. Mon. Wea. Rev., 114, 594604, doi:10.1175/1520-0493(1986)114<0594:IVOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nat. Geosci., 3, 168172, doi:10.1038/ngeo760.

    • Search Google Scholar
    • Export Citation
  • Jeffrey, S. J., J. O. Carter, K. B. Moodie, and A. R. Beswick, 2001: Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Modell. Software, 16, 309330, doi:10.1016/S1364-8152(01)00008-1.

    • Search Google Scholar
    • Export Citation
  • Jones, D. A., W. Wang, and R. Fawcett, 2009: High-quality spatial climate data-sets for Australia. Aust. Meteor. Oceanogr. J., 58, 233248.

    • Search Google Scholar
    • Export Citation
  • Jourdain, N. C., A. S. Gupta, A. S. Taschetto, C. C. Ummenhofer, A. F. Moise, and K. Ashok, 2013: The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Climate Dyn., 41, 30733102, doi:10.1007/s00382-013-1676-1.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., J. A. Renwick, and J. McGregor, 2009: Hemispheric-scale seasonality of the southern annular mode and impacts on the climate of New Zealand. J. Climate, 22, 47594770, doi:10.1175/2009JCLI2640.1.

    • Search Google Scholar
    • Export Citation
  • King, A. D., L. V. Alexander, and M. G. Donat, 2013a: Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability. Geophys. Res. Lett., 40, 22712277, doi:10.1002/grl.50427.

    • Search Google Scholar
    • Export Citation
  • King, A. D., L. V. Alexander, and M. G. Donat, 2013b: The efficacy of using gridded data to examine extreme rainfall characteristics: A case study for Australia. Int. J. Climatol., 33, 23762387, doi:10.1002/joc.3588.

    • Search Google Scholar
    • Export Citation
  • King, A. D., S. C. Lewis, S. E. Perkins, L. V. Alexander, M. G. Donat, D. J. Karoly, and M. T. Black, 2013c: Limited evidence of anthropogenic influence on the 2011–12 extreme rainfall over southeast Australia [in “Explaining Extreme Events of 2012 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 94 (9), S55S58.

    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., S. J. Woolnough, and J. Syktus, 2013: On the drivers of inter-annual and decadal rainfall variability in Queensland, Australia. Int. J. Climatol., 33, 24132430, doi:10.1002/joc.3593.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Larsen, S. H., and N. Nicholls, 2009: Southern Australian rainfall and the subtropical ridge: Variations, interrelationships, and trends. Geophys. Res. Lett., 36, L08708, doi:10.1029/2009GL037786.

    • Search Google Scholar
    • Export Citation
  • Lavender, S. L., and D. J. Abbs, 2013: Trends in Australian rainfall: Contribution of tropical cyclones and closed lows. Climate Dyn., 40, 317–326, doi:10.1007/s00382-012-1566-y.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maher, P., and S. C. Sherwood, 2014: Disentangling the multiple sources of large-scale variability in Australian wintertime precipitation. J. Climate, doi:10.1175/JCLI-D-13-00659.1, in press.

    • Search Google Scholar
    • Export Citation
  • Marshall, G., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and N. Nicholls, 1983: Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon. Wea. Rev., 111, 19982004, doi:10.1175/1520-0493(1983)111<1998:SRBARA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meneghini, B., I. Simmonds, and I. N. Smith, 2007: Association between Australian rainfall and the southern annular mode. Int. J. Climatol., 27, 109121, doi:10.1002/joc.1370.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., P. McIntosh, L. Pigot, and M. Pook, 2007: The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Climate, 20, 28722880, doi:10.1175/JCLI4152.1.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., W. Cai, and P. Whetton, 2013: Influence of climate variability on seasonal extremes over Australia. J. Geophys. Res. Atmos., 118, 643654, doi:10.1002/jgrd.50164.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., B. Lavery, C. Frederiksen, W. Drosdowsky, and S. Torok, 1996: Recent apparent changes in relationships between the El Niño-Southern Oscillation and Australian rainfall and temperature. Geophys. Res. Lett., 23, 33573360, doi:10.1029/96GL03166.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., W. Drosdowsky, and B. Lavery, 1997: Australian rainfall variability and change. Weather, 52, 6671, doi:10.1002/j.1477-8696.1997.tb06274.x.

    • Search Google Scholar
    • Export Citation
  • Parker, D., C. Folland, A. Scaife, J. Knight, A. Colman, P. Baines, and B. Dong, 2007: Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112, D18115, doi:10.1029/2007JD008411.

    • Search Google Scholar
    • Export Citation
  • Pook, M., and T. Gibson, 1999: Atmospheric blocking and storm tracks during SOP-1 of the FROST project. Aust. Meteor. Mag.,48, 51–60.

  • Power, S., M. Haylock, R. Colman, and X. Wang, 2006: The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J. Climate, 19, 47554771, doi:10.1175/JCLI3868.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., M. J. Pook, P. C. McIntosh, M. C. Wheeler, and H. H. Hendon, 2009: On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137, 32333253, doi:10.1175/2009MWR2861.1.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., P. C. McIntosh, and M. J. Pook, 2013: Synoptic components of rainfall variability and trends in southeast Australia. Int. J. Climatol., 33, 24592472, doi:10.1002/joc.3597.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Smith, I., 2004: An assessment of recent trends in Australian rainfall. Aust. Meteor. Mag., 53, 163173.

  • Speer, M. S., 2008: On the late twentieth century decrease in Australian east coast rainfall extremes. Atmos. Sci. Lett., 9, 160170, doi:10.1002/asl.191.

    • Search Google Scholar
    • Export Citation
  • Speer, M. S., L. M. Leslie, and A. O. Fierro, 2011: Australian east coast rainfall decline related to large scale climate drivers. Climate Dyn., 36, 14191429, doi:10.1007/s00382-009-0726-1.

    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., A. S. Gupta, H. H. Hendon, C. C. Ummenhofer, and M. H. England, 2011: The contribution of Indian Ocean sea surface temperature anomalies on Australian summer rainfall during El Niño events. J. Climate, 24, 37343747, doi:10.1175/2011JCLI3885.1.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., and W. Drosdowsky, 2013: The relationship between the decline of southeastern Australian rainfall and the strengthening of the subtropical ridge. Int. J. Climatol., 33, 10211034, doi:10.1002/joc.3492.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., 1984: Signal versus noise in the Southern Oscillation. Mon. Wea. Rev., 112, 326332, doi:10.1175/1520-0493(1984)112<0326:SVNITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., M. H. England, P. C. McIntosh, G. A. Meyers, M. J. Pook, J. S. Risbey, A. S. Gupta, and A. S. Taschetto, 2009: What causes southeast Australia's worst droughts? Geophys. Res. Lett., 36, L04706, doi:10.1029/2008GL036801.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., and Coauthors, 2011: Indian and Pacific Ocean influences on southeast Australian drought and soil moisture. J. Climate, 24, 13131336, doi:10.1175/2010JCLI3475.1.

    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., S. Saha, and A. Johansson, 2000: Empirical orthogonal teleconnections. J. Climate, 13, 14211435, doi:10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, C. E. Menkes, N. C. Jourdain, P. Marchesiello, and G. Madec, 2011: Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Climate Dyn., 36, 18811896, doi:10.1007/s00382-009-0716-3.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and C. D. Hoyos, 2010: Beyond the spring barrier? Nat. Geosci., 3, 152153, doi:10.1038/ngeo800.

  • Whan, K., B. Timbal, and J. Lindesay, 2014: Linear and nonlinear statistical analysis of the impact of sub-tropical ridge intensity and position on south-east Australian rainfall. Int. J. Climatol., 34, 362–342, doi:10.1002/joc.3689.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, doi:10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2061 651 51
PDF Downloads 1464 375 36