Robust ENSO across a Wide Range of Climates

Georgy E. Manucharyan Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Georgy E. Manucharyan in
Current site
Google Scholar
PubMed
Close
and
Alexey V. Fedorov Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Alexey V. Fedorov in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

El Niño–Southern Oscillation (ENSO) is a pronounced mode of climate variability that originates in the tropical Pacific and affects weather patterns worldwide. Growing evidence suggests that despite extensive changes in tropical climate, ENSO was active over vast geological epochs stretching millions of years from the late Cretaceous to the Holocene. In particular, ENSO persisted during the Pliocene, when a dramatic reduction occurred in the mean east–west temperature gradient in the equatorial Pacific. The mechanisms for sustained ENSO in such climates are poorly understood. Here a comprehensive climate model is used to simulate ENSO for a broad range of tropical Pacific mean climates characterized by different climatological SST gradients. It is found that the simulated ENSO remains surprisingly robust: when the east–west gradient is reduced from 6° to 1°C, the amplitude of ENSO decreases only by 30%–40%, its dominant period remains close to 3–4 yr, and the spectral peak stays above red noise. To explain these results, the magnitude of ocean–atmosphere feedbacks that control the stability of the natural mode of ENSO (the Bjerknes stability index) is evaluated. It is found that as a result of reorganization of the atmospheric Walker circulation in response to changes in the mean surface temperature gradient, the growth/decay rates of the ENSO mode stay nearly constant throughout different climates. These results explain the persistence of ENSO in the past and, in particular, reconcile the seemingly contradictory findings of ENSO occurrence and the small mean east–west temperature gradient during the Pliocene.

Corresponding author address: Georgy Manucharyan, 210 Whitney Ave., Kline Geology Laboratory, New Haven, CT 06511. E-mail: georgy.manucharyan@yale.edu

Abstract

El Niño–Southern Oscillation (ENSO) is a pronounced mode of climate variability that originates in the tropical Pacific and affects weather patterns worldwide. Growing evidence suggests that despite extensive changes in tropical climate, ENSO was active over vast geological epochs stretching millions of years from the late Cretaceous to the Holocene. In particular, ENSO persisted during the Pliocene, when a dramatic reduction occurred in the mean east–west temperature gradient in the equatorial Pacific. The mechanisms for sustained ENSO in such climates are poorly understood. Here a comprehensive climate model is used to simulate ENSO for a broad range of tropical Pacific mean climates characterized by different climatological SST gradients. It is found that the simulated ENSO remains surprisingly robust: when the east–west gradient is reduced from 6° to 1°C, the amplitude of ENSO decreases only by 30%–40%, its dominant period remains close to 3–4 yr, and the spectral peak stays above red noise. To explain these results, the magnitude of ocean–atmosphere feedbacks that control the stability of the natural mode of ENSO (the Bjerknes stability index) is evaluated. It is found that as a result of reorganization of the atmospheric Walker circulation in response to changes in the mean surface temperature gradient, the growth/decay rates of the ENSO mode stay nearly constant throughout different climates. These results explain the persistence of ENSO in the past and, in particular, reconcile the seemingly contradictory findings of ENSO occurrence and the small mean east–west temperature gradient during the Pliocene.

Corresponding author address: Georgy Manucharyan, 210 Whitney Ave., Kline Geology Laboratory, New Haven, CT 06511. E-mail: georgy.manucharyan@yale.edu
Save
  • An, S.-I., and F.-F. Jin, 2000: An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophys. Res. Lett., 27, 25732576, doi:10.1029/1999GL011090.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., and F.-F. Jin, 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate, 14, 34213432, doi:10.1175/1520-0442(2001)014<3421:CROTAZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2013: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 1999–2018, doi:10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Brown, J., M. Collins, and A. Tudhope, 2006: Coupled model simulations of mid-Holocene ENSO and comparisons with coral oxygen isotope records. Adv. Geosci., 6, 2933, doi:10.5194/adgeo-6-29-2006.

    • Search Google Scholar
    • Export Citation
  • Brown, J. N., A. V. Fedorov, and E. Guilyardi, 2011: How well do coupled models replicate ocean energetics relevant to ENSO? Climate Dyn., 36, 21472158, doi:10.1007/s00382-010-0926-8.

    • Search Google Scholar
    • Export Citation
  • Burls, N. J., and A. V. Fedorov, 2014: What controls the mean east–west sea surface temperature gradient in the equatorial Pacific: The role of cloud albedo. J. Climate, 27, 2757–2778, doi:10.1175/JCLI-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., 2005: The evolution of El Niño, past and future. Earth Planet. Sci. Lett., 230, 227240.

  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Cherchi, A., S. Masina, and A. Navarra, 2008: Impact of extreme CO2 levels on tropical climate: A CGCM study. Climate Dyn., 31, 743758, doi:10.1007/s00382-008-0414-6.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 2008: An Introduction to the Dynamics of El Niño and the Southern Oscillation. Elsevier, 324 pp.

  • Clement, A. C., R. Seager, and M. A. Cane, 1999: Orbital controls on the El Niño/Southern Oscillation and the tropical climate. Paleoceanography, 14, 441456, doi:10.1029/1999PA900013.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, and M. A. Cane, 2000: Suppression of El Niño during the mid-Holocene by changes in the Earth’s orbit. Paleoceanography, 15, 731737, doi:10.1029/1999PA000466.

    • Search Google Scholar
    • Export Citation
  • Cobb, K. M., C. D. Charles, H. Cheng, and R. L. Edwards, 2003: El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424, 271276, doi:10.1038/nature01779.

    • Search Google Scholar
    • Export Citation
  • Cobb, K. M., N. Westphal, H. R. Sayani, J. T. Watson, E. Di Lorenzo, H. Cheng, R. Edwards, and C. D. Charles, 2013: Highly variable El Niño–Southern Oscillation throughout the Holocene. Science, 339, 6770, doi:10.1126/science.1228246.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, doi:10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Davies, A., A. E. Kemp, and H. Pälike, 2011: Tropical ocean–atmosphere controls on inter-annual climate variability in the Cretaceous Arctic. Geophys. Res. Lett., 38, L03706, doi:10.1029/2010GL046151.

    • Search Google Scholar
    • Export Citation
  • Davies, A., A. E. Kemp, G. P. Weedon, and J. A. Barron, 2012: El Niño–Southern Oscillation variability from the late cretaceous Marca shale of California. Geology, 40, 1518, doi:10.1130/G32329.1.

    • Search Google Scholar
    • Export Citation
  • Dekens, P. S., A. C. Ravelo, M. D. McCarthy, and C. A. Edwards, 2008: A 5 million year comparison of Mg/Ca and alkenone paleothermometers. Geochem. Geophys. Geosyst., 9, Q10001, doi:10.1029/2007GC001931.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., A. C. Clement, G. A. Vecchi, B. J. Soden, B. P. Kirtman, and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 48734892, doi:10.1175/2009JCLI2982.1.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., B. P. Kirtman, A. C. Clement, S.-K. Lee, G. A. Vecchi, and A. Wittenberg, 2012: Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Climate, 25, 73997420, doi:10.1175/JCLI-D-11-00494.1.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., 2010: Ocean response to wind variations, warm water volume, and simple models of ENSO in the low-frequency approximation. J. Climate, 23, 38553873, doi:10.1175/2010JCLI3044.1.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. Philander, 2000: Is El Niño changing? Science, 288, 19972002, doi:10.1126/science.288.5473.1997.

  • Fedorov, A. V., and S. G. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14, 30863101, doi:10.1175/1520-0442(2001)014<3086:ASAOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., P. Dekens, M. McCarthy, A. Ravelo, P. DeMenocal, M. Barreiro, R. Pacanowski, and S. Philander, 2006: The Pliocene paradox (mechanisms for a permanent El Niño). Science, 312, 1485–1489, doi:10.1126/science.1122666.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., C. Brierley, and K. Emanuel, 2010: Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature, 463, 10661070, doi:10.1038/nature08831.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., C. Brierley, K. Lawrence, Z. Liu, P. Dekens, and A. Ravelo, 2013: Patterns and mechanisms of early Pliocene warmth. Nature, 496, 4349, doi:10.1038/nature12003.

    • Search Google Scholar
    • Export Citation
  • Ford, H. L., A. C. Ravelo, and S. Hovan, 2012: A deep eastern equatorial Pacific thermocline during the early Pliocene warm period. Earth Planet. Sci. Lett., 355, 152161, doi:10.1016/j.epsl.2012.08.027.

    • Search Google Scholar
    • Export Citation
  • Galeotti, S., A. von der Heydt, M. Huber, D. Bice, H. Dijkstra, T. Jilbert, L. Lanci, and G.-J. Reichart, 2010: Evidence for active El Niño Southern Oscillation variability in the late Miocene greenhouse climate. Geology, 38, 419422, doi:10.1130/G30629.1.

    • Search Google Scholar
    • Export Citation
  • Graham, F. S., and Coauthors, 2014: Effectiveness of the Bjerknes stability index in representing ocean dynamics. Climate Dyn., doi:10.1007/s00382-014-2062-3, in press.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805807, doi:10.1126/science.275.5301.805.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh, and T. Stockdale, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325340, doi:10.1175/2008BAMS2387.1.

    • Search Google Scholar
    • Export Citation
  • Huber, M., and R. Caballero, 2003: Eocene El Niño: Evidence for robust tropical dynamics in the “hothouse.” Science, 299, 877881, doi:10.1126/science.1078766.

    • Search Google Scholar
    • Export Citation
  • Ivany, L. C., T. Brey, M. Huber, D. P. Buick, and B. R. Schöne, 2011: El Niño in the Eocene greenhouse recorded by fossil bivalves and wood from Antarctica. Geophys. Res. Lett.,38, L16709, doi:10.1029/2011GL048635.

  • Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829, doi:10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: Conceptual model. J. Atmos. Sci., 54, 830847, doi:10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708, doi:10.1029/2006GL027221.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., and F.-F. Jin, 2011: An ENSO stability analysis. Part II: Results from the twentieth and twenty-first century simulations of the CMIP3 models. Climate Dyn., 36, 16091627, doi:10.1007/s00382-010-0872-5.

    • Search Google Scholar
    • Export Citation
  • Koutavas, A., P. B. deMenocal, G. C. Olive, and J. Lynch-Stieglitz, 2006: Mid-Holocene El Niño–Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology, 34, 993996, doi:10.1130/G22810A.1.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., M. A. Cane, S. E. Zebiak, and A. Clement, 2005: Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J. Climate, 18, 447456, doi:10.1175/JCLI-3276.1.

    • Search Google Scholar
    • Export Citation
  • Manucharyan, G., C. Brierley, and A. Fedorov, 2011: Climate impacts of intermittent upper ocean mixing induced by tropical cyclones. J. Geophys. Res.,116, C11038, doi:10.1029/2011JC007295.

  • McCreary, J. P., Jr., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24, 466497.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. H. England, O. Elison Timm, and A. T. Wittenberg, 2013: Inferred changes in El Niño–Southern Oscillation variance over the past six centuries. Climate Past, 9, 2269–2284, doi:10.5194/cp-9-2269-2013.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 3551–3559, doi:10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

  • Ravelo, A. C., 2008: Lessons from the Pliocene Warm Period and the onset of Northern Hemisphere glaciation. 2008 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract PP23E-01.

  • Rittenour, T. M., J. Brigham-Grette, and M. E. Mann, 2000: El Niño–like climate teleconnections in New England during the late Pleistocene. Science, 288, 10391042, doi:10.1126/science.288.5468.1039.

    • Search Google Scholar
    • Export Citation
  • Sarachik, E. S., and M. A. Cane, 2010: The El Niño–Southern Oscillation Phenomenon.Cambridge University Press, 369 pp.

  • Scroxton, N., S. Bonham, R. Rickaby, S. Lawrence, M. Hermoso, and A. Haywood, 2011: Persistent El Niño–Southern Oscillation variation during the Pliocene epoch. Paleoceanography, 26, PA2215, doi:10.1029/2010PA002097.

    • Search Google Scholar
    • Export Citation
  • Shields, C. A., D. A. Bailey, G. Danabasoglu, M. Jochum, J. T. Kiehl, S. Levis, and S. Park, 2012: The low-resolution CCSM4. J. Climate, 25, 39934014, doi:10.1175/JCLI-D-11-00260.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and J. Gibson, 2000: The ERA-40 project plan.ECMWF. [Available online at http://old.ecmwf.int/research/era/Project/Plan/index.html.]

  • Sun, D.-Z., 2003: A possible effect of an increase in the warm-pool SST on the magnitude of El Niño warming. J. Climate, 16, 185205, doi:10.1175/1520-0442(2003)016<0185:APEOAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., T. Zhang, and S.-I. Shin, 2004: The effect of subtropical cooling on the amplitude of ENSO: A numerical study. J. Climate, 17, 37863798, doi:10.1175/1520-0442(2004)017<3786:TEOSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, C., and D. Battisti, 2001: A linear stochastic dynamical model of ENSO. Part II: Analysis. J. Climate, 14, 445466, doi:10.1175/1520-0442(2001)014<0445:ALSDMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., S. Lorenz, S. An, A. Clement, and S. Xie, 2007: The effect of orbital forcing on the mean climate and variability of the tropical Pacific. J. Climate, 20, 41474159, doi:10.1175/JCLI4240.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Wara, M. W., A. C. Ravelo, and M. L. Delaney, 2005: Permanent El Niño–like conditions during the Pliocene warm period. Science, 309, 758761, doi:10.1126/science.1112596.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., J.-S. Kug, F.-F. Jin, M. Collins, M. Ohba, and A. T. Wittenberg, 2012: Uncertainty in the ENSO amplitude change from the past to the future. Geophys. Res. Lett., 39, L20703, doi:10.1029/2012GL053305.

    • Search Google Scholar
    • Export Citation
  • Watanabe, T., and Coauthors, 2011: Permanent El Niño during the Pliocene warm period not supported by coral evidence. Nature, 471, 209211, doi:10.1038/nature09777.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2002: ENSO response to altered climates. Ph.D. thesis, Princeton University, 475 pp.

  • Wittenberg, A. T., 2004: Extended wind stress analyses for ENSO. J. Climate, 17, 2526–2540, doi:10.1175/1520-0442(2004)017<2526:EWSAFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, doi:10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., A. Clement, and P. Di Nezio, 2014: The South Pacific meridional mode: A mechanism for ENSO-like variability. J. Climate, 27, 769–783, doi:10.1175/JCLI-D-13-00082.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 571 314 22
PDF Downloads 290 133 19